Изобретение относится к электротехнике, в частности к торцевым бесконтактным электрическим машинам.
Известна торцевая бесконтактная электрическая машина с внешнезамкнутым магнитопроводом, так называемая машина Александерсена (Домбур Л.Э. Аксиальные индукторные машины, Рига, Зинатне, 1984, с. 24), содержащая внешний магнитопровод, два торцевых статора и размещенный между ними зубчатый безобмоточный ротор. Электродвижущая сила в обмотках статора наводится за счет модуляции аксиального магнитного потока обмотки возбуждения в активной зоне явнополюсного ротора.
Основным недостатком такой конструкции является низкая степень использования активных материалов из-за наличия существенной постоянной составляющей магнитного потока возбуждения, не участвующей в процессе преобразования энергии, но дополнительно загружающей магнитопровод.
Известна бесконтактная синхронная электрическая машина (Авт. св. N 213956, кл. МКИ Н 02 К 19/24), имеющая во впадинах между одноименными полюсами индуктора призматические постоянные магниты, ориентированные так, что они образуют магнитные полюса противоположной полярности.
Недостатками такой конструкции являются:
необходимость применения постоянных магнитов с высокими значениями остаточного намагничивания Вr, определяющей величину рабочего потока магнита и значит степень модуля основного магнитного потока в воздушном зазоре и коэрцитивной силы Нc, определяющей высоту магнита при данном зазоре и стабильность его магнитный свойств;
большой суммарный вес постоянных магнитов полюсной системы, практически равный весу магнитомягких полюсов;
сложность крепления постоянных магнитов в пазах цилиндрического ротора.
Известна также бесконтактная торцевая электрическая машина (регулируемый генератор) с постоянными магнитами (Авт.св. N 265250, кл. МКИ Н 02 К 21/08), содержащая между двумя торцевыми статорами ротор, полюсная система которого выполнена в виде брусков, аксиально намагниченных в одном направлении постоянных магнитов и чередующихся с ними магнитомягких полюсов противоположной полярности.
В такой конструкции остаются существенными вес постоянных магнитов и с учетом обеспечения высоких значений Вr и Нc, их стоимость.
Известны бесконтактные электрические машины с постоянными магнитами, использующие принцип концентрации магнитного потока (патент ЕПВ N 0327470, кл. МКИ Н 02 К 21/08, 1/28; патент СРР N 122617, кл. МКИ Н 02 К 1/22; патент США N 4631435, кл. МКИ Н 02 К 21/14. НКИ 310/156; патент США N 4481437, кл. МКИ Н 02 К 1/12, НКИ 310/191; патент Франции N 2627030, кл. МКИ Н 02 К 1/28, 21/08, 21/14; патент США N 4578610, кл. МКИ Н 02 К 21/12, НКИ 310/156 и др. ), обеспечивающие увеличение магнитного потока с рабочей поверхности магнитного полюса за счет специального расположения постоянных магнитов и магнитомягких сердечников.
Однако в таких конструкциях ограничены возможности концентрации магнитного потока из-за невозможности использования всех нерабочих поверхностей сердечников, конструктивной сложности крепления активных зон полюсов систем и сложности регулирования выходного напряжения.
Известна также торцевая бесконтактная электрическая машина комбинированного возбуждения (Авт. св. N 1193752, кл. МКИ4 H 02 K 21/24), принятая за прототип, имеющая два торцевых статора с рабочими обмотками, по крайней мере одну кольцевую обмотку возбуждения, установленную в неподвижном внешнем магнитопроводе, и ротор с 2р-полюсами, содержащий две магнитоизолированные Р-полюсные системы, одна из которых выполнена в виде сердечников из магнитомягкой стали, другая в виде аксиально намагниченных постоянных магнитов, с торцов которых установлены шайбы из магнитомягкого материала.
Такая конструкция обеспечивает увеличение концентрации магнитного потока и возможность глубокого регулирования выходного напряжения.
Однако такая электрическая машина имеет значительный вес активных материалов из-за большого веса постоянных магнитов и низкой степени использования концентрации магнитного потока.
Эта машина имеет сравнительно невысокую надежность из-за конструктивной сложности крепления вынесенных на периферию полюсных систем ротора.
Анализ приведенного уровня техники свидетельствует о целесообразности создания торцевой бесконтактной электрической машины с меньшим весом и более высокой надежностью.
Это достигается в торцевой бесконтактной электрической машине, содержащей два статора с обмотками, по крайней мере одну кольцевую обмотку возбуждения, установленную в неподвижном внешнем магнитопроводе, и ротор, состоящий из двух магнитоизолированных Р-полюсных систем, причем сердечники одной из систем выполнены из магнитомягкой стали, сердечники другой системы выполнены из магнитомягких призматических брусков, по всем граням которых кроме граней, обращенных к статорам, прикреплены плоские постоянные магниты, а зубцы ротора, являющиеся магнитными шунтами для магнитов, размещенных на боковых гранях брусков, расположены внутри двух магнитомягких колец, плотно прилегающих к полюсам ротора и являющихся шунтами для магнитов, установленных на верхних и нижних гранях призматических брусков.
На фиг. 1 представлен общий вид предлагаемой электрической машины, на фиг. 2 продольный разрез ротора вдоль оси его магнитного полюса и на фиг. 3 вид сверху развернутого разреза полюсной системы ротора вдоль среднего диаметра с указанием путей замыкания потоков магнитов и обмотки возбуждения.
Электрическая машина (фиг. 1) имеет два статора 1 с рабочими обмотками, кольцевую обмотку возбуждения 2, внешний магнитопровод 3 и ротор, состоящий из двух Р-полюсных систем противоположной полярности, одна из которых состоит из магнитомягких полюсов 4, а другая выполнена из магнитомягких сердечников 5, 6 в виде призматических брусков, между которыми расположены постоянные магниты 7, 8, к верхним граням прикреплены магниты 9, 10, к нижним 11, 12, а к боковым граням брусков прикреплены магниты 13 16. Магнитомягкие кольца 17, 18 охватывают обе полюсные системы и посредством немагнитных колец 19 и 20 крепят полюсные системы ротора к ступице 21.
Электрическая машина работает следующим образом.
При питании кольцевой обмотки возбуждения 2 (фиг. 1) постоянным током создается основной магнитный поток Ф0, проходящий через внешний магнитопровод 3, статоры 1, магнитомягкие полюса 4 ротора и рабочие воздушные зазоры (фиг. 1).
Магнитные потоки постоянных магнитов 7oC16 (фиг. 2 и 3) магнитных полюсов концентрируются в зонах граней сердечников 5 и 6, обращенных к статорам 1. Постоянные магниты 7, 8 создают поток Ф78, а магниты 9, 10 поток Ф910, причем кольцо 17 является частью магнитопровода, обеспечивающего прохождение этого потока. В магнитопровод для потока Ф1112, созданного магнитами 11, 12, включено кольцо 18. Магнитные потоки Ф1314 и Ф1516 используют в качестве магнитной арматуры магнитомягкие полюса 4 ротора. Суммарный поток магнитов Фм в зоне рабочих зазоров направлен вторично потоку Фо и ограничивает проникновение магнитного потока Фо в паз (магнитный полюс), снижает величину постоянной составляющей потока Фо и увеличивает амплитуду первой гармонической составляющей потока Фо. Коэффициент концентрации магнитного потока в такой системе может достигать величины 5 6 и более.
Это позволяет при использовании относительно дешевых магнитов типа феррит барий, имеющих величины рабочих индукций порядка 0,2 0,22 Т, добиться индукции в воздушном зазоре 1 Т и более. Суммарный магнитный поток магнитов Фм замыкается как по пути основного магнитного потока Фо, так и через соединение магнитомягкие полюса (аналогично нормальным синхронным переменнополюсным машинам). При вращении ротора за счет изменения амплитуды и знака магнитного потока относительно неподвижной рабочей обмотки статора 1 в рабочей обмотке будет наводиться электродвижущая сила требуемой величины и частоты.
В предлагаемой торцевой бесконтактной электрической машине обеспечиваются лучшее использование активных материалов и меньший суммарный вес машины за счет максимально возможной концентрации магнитного потока постоянных магнитов при использовании всех нерабочих (не обращенных к статорам) граней призматических брусков сердечников магнитных полюсов.
Также сведена до минимума возможность появления потоков рассеяния постоянных магнитов шунтированием одних магнитомягкими кольцами, а других магнитомягкими полюсами ротора.
Предложенная электрическая машина имеет более высокую надежность за счет повышения надежности конструкции ротора применением колец, которые обеспечивают жесткое крепление полюсной системы (или полюсных систем) к ступице ротора.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ В ТЕПЛОВУЮ | 1995 |
|
RU2097946C1 |
ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2003 |
|
RU2246168C1 |
ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2003 |
|
RU2246167C1 |
МАГНИТОЭЛЕКТРИЧЕСКАЯ БЕСКОНТАКТНАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ | 2010 |
|
RU2437202C1 |
БЕСКОНТАКТНАЯ МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ | 2010 |
|
RU2436221C1 |
БЕСКОНТАКТНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ | 2010 |
|
RU2437201C1 |
ОДНОФАЗНЫЙ БЕСКОНТАКТНЫЙ МАГНИТОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР | 2009 |
|
RU2393615C1 |
УСТРОЙСТВО ТЕРМОМАГНИТНОГО ВОЗДЕЙСТВИЯ | 1992 |
|
RU2062626C1 |
Синхронная переменнополюсная электрическая машина | 1973 |
|
SU599316A1 |
Бесконтактный синхронный торцовой генератор | 1980 |
|
SU892591A1 |
Использование: в бесконтактных торцевых электрических машинах. Сущность: в торцевой бесконтактной электрической машине каждый полюс Р-полюсной системы выполнен из пары магнитомягких призматических брусков 5, 6. Смещенных вдоль аксиальной длины ротора, снабженных постоянными магнитами 7 - 16. Сердечники 4 первой Р-полюсной системы расположены внутри магнитомягких колец 17, 18, плотно прилегающих к полюсам второй Р-полюсной системы, являясь шунтами магнитов 9, 11. В результате снижается вес за счет максимально возможной концентрации магнитного потока при использовании всех нерабочих граней призматических брусков сердечников второй Р-полюсной системы ротора. Кроме того, использование колец обеспечивает жесткое крепление полюсных систем к ступице ротора, что повышает надежность. 3 ил.
Торцевая бесконтактная электрическая машина, содержащая два статора с обмотками, по крайней мере одну обмотку возбуждения, установленную в неподвижном внешнем магнитопроводе, и ротор, составленный из двух p-полюсных систем, причем сердечники первой p-полюсной системы выполнены из магнитомягкой стали, отличающаяся тем, что каждый полюс второй p-полюсной системы выполнен из пары магнитомягких призматических брусков, смещенных вдоль аксиальной длины ротора, ко всем граням которых, кроме граней, обращенных к статорам, прикреплены плоские постоянные магниты, а сердечники первой p-полюсной системы, являющиеся магнитными шунтами для магнитов, размещенных на боковых гранях брусков второй p-полюсной системы, расположены внутри двух магнитомягких колец, плотно прилегающих к полюсам второй p-полюсной системы и являющихся шунтами для магнитов, установленных на верхних и нижних гранях брусков полюсов.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Домбур Л.Э | |||
Аксиальные индукторные машины.- Рига: Зинатне, 1984, с.24 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
БЕСКОНТАКТНАЯ СИНХРОННАЯ МАШИНА | 0 |
|
SU213956A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
БЕСКОНТАКТНЫЙ ТОРЦОВЫЙ РЕГУЛИРУЕМЫЙ ГЕНЕРАТОР С ПОСТОЯННЫМИ МАГНИТАМИ | 0 |
|
SU265250A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Торцовая бесконтактная электрическая машина комбинированного возбуждения | 1983 |
|
SU1193752A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1997-03-27—Публикация
1992-07-14—Подача