ОПТИЧЕСКИЙ АДАПТИВНЫЙ МОДУЛЬ Российский патент 1997 года по МПК G02B26/06 

Описание патента на изобретение RU2077068C1

Изобретение относится к управляемой оптике и может быть использовано для уменьшения расходимости излучения лазеров при их эксплуатации, а также для управления волновым фронтом лазерных пучков в оптических приборах и системах.

Известна внутрирезонаторная адаптивная система компенсации искажений излучения лазера, содержащая корректирующее устройство в виде адаптивного зеркала, установленного внутри резонатора, линзу, в фокусе которой находится фотоприемник с расположенной перед ним точечной диафрагмой, усилители, синхронные детекторы, задающие генераторы и смесители. Разделение каналов управления адаптивным зеркалом достигается выбором различных модулирующих частот задающих генераторов. Недостатками данной системы являются использование внутрирезонаторной схемы коррекции, поскольку это предполагает вмешательство в конструкцию лазера, сложность системы и ее элементов, низкая точность и надежность компенсации искажений.

Известна адаптивная система компенсации теплового самовоздействия лазерного излучения, содержащая корректирующее устройство, состоящее из цилиндрических линз и поворотных зеркал, и систему управления им, состоящую из лазера, оптической системы и двух каналов управления. Один из каналов, содержащий квадратный приемник излучения, расположенный в фокусе линзы, дифференциальные и выходные усилители, формирует сигналы управления положением двух поворотных зеркал. Другой канал, содержащий линзу, в фокусе которой находится фотоприемник с расположенной перед ним точечной диафрагмой, усилители, синхронные детекторы, задающие генераторы, фазовращатели, фильтры и сумматоры, формирует сигналы управления шаговыми двигателями, которые перемещают цилиндрические линзы вдоль оптической оси, причем разделение сигналов управления положением цилиндрических линз достигается выбором различных модулирующих частот задающих генераторов.

Недостатками известного устройства являются сложность системы в целом, а также устройств, в нее входящих, низкая точность и надежность компенсации искажений.

Техническим результатом от использования изобретения является упрощение системы динамической компенсации дефокусировки и наклонов волнового фронта лазерного излучения с одновременным повышением точности и надежности компенсации.

Указанный результат достигается тем, что оптический адаптивный модуль, содержащий корректирующее устройство и два приемника излучения, расположенных в фокусах линз, один из который квадратный, а перед другим расположена точечная диафрагма, снабжен находящимися в едином корпусе последовательно расположенными входным оптическим окном, корректирующим устройством, содержащим динамическую юстировочную головку с расположенным в ней адаптивным зеркалом, и прямоугольной призмой, катетные грани которой частично прозрачны, входным оптическим окном, двумя приемниками излучения и электронным усилителем-преобразователем, входы которого соединены с выходами приемников излучения, а выходы с динамической юстировочной головкой и адаптивным зеркалом.

Упрощение системы динамической компенсации дефокусировки и наклонов волнового фронта лазерного излучения достигается за счет исключения лазера, синхронных детекторов, задающих генераторов, фазовращателей, фильтров и сумматоров и замены на прямую разделительную призму и электронный усилитель преобразователь. Повышение точности и надежности компенсации дефокусировки и наклонов волнового фронта обеспечивается за счет использования биморфного адаптивного зеркала вместо цилиндрических линз, перемещаемых шаговыми двигателями, и динамической юстировочной головки с пьезоэлектрическими приводами вместо поворотных зеркал.

На фиг. 1 приведена принципиальная схема оптического адаптивного модуля; на фиг. 2 расположение фокального пятна на квадратном приемнике излучения в исходном состоянии; на фиг. 3 то же, при наличии искажений волнового фронта; на фиг. 4 принципиальная схема электронного усилителя-преобразователя; на фиг. 5 состав и принцип действия динамической юстировочной головки.

Устройство состоит из корпуса 1, в котором имеются входное 2 и выходное 3 оптические окна. За входным окном 2 последовательно расположены адаптивное зеркало 4, укрепленное в динамической юстировочной головке 5, и разделительная призма 6, после которой расположены два приемных оптических канала и выходное оптическое окно 3. Один из приемных оптических каналов содержит линзу 7 и квадратный приемник излучения 8, другой линзу 9, в фокусе которой находится приемник излучения 10 с расположенной перед ним точечной диафрагмой 11. Выходы приемников излучения 8 и 10 подключены через электронный усилитель-преобразователь 12 к динамической юстировочной головке 5 и адаптивному зеркалу 4.

Оптический адаптивный модуль работает следующим образом.

Лазерный пучок через входное окно 2 поступает на адаптивное зеркало 4 и далее на разделительную призму 6, с которой небольшая доля излучения отводится в приемные оптические каналы, а основной пучок через выходное окно 3 выводится из лазерного адаптивного модуля. В исходном состоянии форма отражающей поверхности адаптивного зеркала 4 плоская, а элементы 4 11 съюстированы так, что подающий на адаптивное зеркало 4 лазерный пучок E с плоским волновым фронтом

где амплитуда пучка;
радиус вектор;
ωo угловая частота лазерного излучения;
t временная координата;
k волновое число;
Φo постоянный сдвиг фазы
создает в центре каждого приемника излучения фокальное пятно минимального диаметра. На фиг. 2 показано расположение фокального пятна на квадратном приемнике излучения 8 при входном пучке 1 в исходном состоянии, когда для выходных сигналов U1 U4 этого приемника, пропорциональных площадям засветки соответствующих светочувствительных площадок П1,П4, справедливо
U1исх=U3исх (2)
U2исх=U4исх (3)
Выходной сигнал U5 второго приемника излучения 10, пропорциональный интенсивности излучения в центре фокального пятна, в исходном состоянии при входном пучке (1) имеет свое максимальное значение Uмакс
U5исх=Uмакс
Электронный усилитель-преобразователь 12 (фиг. 4) имеет три канала усиления, каждый из которых содержит два последовательно расположенных дифференциальных усилителя 13, причем последние из них имеют обратную связь через резистор 14, а первые регулировку коэффициента усиления. Один из каналов усиления дополнительно содержит схему запоминания и сравнения 15, а также потенциометр 16. Выходные сигналы U1.U5 приемников излучения 8, 10 поступают на входы электронного усилителя-преобразователя 12, как показано на фиг. 4, который формирует управляющие сигналы адаптивного зеркала 4 V3 и динамической юстировочной головки 5 V1, V2

где U1.U4 выходные сигналы квадратного приемника излучения;
U5 выходной сигнал второго приемника излучения;
Uмакс выходной сигнал второго приемника в исходном состоянии;
K1.K3 коэффициенты усиления каналов электронного усилителя-преобразователя;
' обозначение предыдущих значений сигналов U1.U5, V1.V3,
причем знак перед вторым слагаемым в (7) меняется на противоположный, если:

В исходном состоянии справедливо:
V1исх=V2исх=V3исх=0 (9)
При наличии в лазерном пучке (1) искажений типа наклонов и дефокусировки волнового фронта, описываемых соответственно функциями

где C1, C2, C3 постоянные коэффициенты,
фокальное пятно на квадратном приемнике излучения 8 смещается (фиг. 3) так, что на динамическую юстировочную головку 5 поступают управляющие сигналы V1, V2 в соответствии с (5), (6). Интенсивность излучения в центре фокального пятна на приемнике 10 в этом случае снижается так, что на адаптивное зеркало 4 поступает управляющий сигнал V3 в соответствии с (7), (8). Динамическая юстировочная головка 5 содержит неподвижное основание 17 ( фиг. 5) с установленными на нем опорой 18 и пьезоэлектрическим приводом 19, на которых расположено подвижное основание 20, причем соединение его с опорой 18 представляет собой шаровой шарнир. На подвижном основании 20 с помощью опоры 21 и пьезоэлектрического привода 22 аналогично установлена подвижная оправка 23, в которой неподвижно закрепляется адаптивное зеркало 4, причем угол между прямыми, соединяющими элементы 18 и 19, 21 и 22, составляет 90o. Пьезоэлектрические приводы 19 и 22 деформируются под воздействием управляющих сигналов V2 и V1 соответственно так, что наклоны отражающей поверхности адаптивного зеркала 4 описываются функциями S1 и S2
S1=V1•a1•x (13)
S2=V2•a2•y (14)
где f1, a2 постоянные коэффициенты.

Адаптивное зеркало 4-биморфное с управляющим электродом в виде круга и функцией отклика f:
f=a3(x2+y2) (15)
где a3 постоянный коэффициент;
деформируется под воздействием управляющего сигнала V3 так, что его отражающая поверхность описывается функцией S3
S3= V3f=V3a3•(x2+y2). (16) фаза Φотр. отраженного от адаптивного зеркала 4 лазерного пучка (1), содержащего наклоны (10), (11) и дефокусировку (12) волнового фронта, есть
Φотрo123-2K•cosθo•(S1+S2+S3), (17)
где θ угол падения лазерного пучка на зеркало и при некоторых значениях коэффициентов усиления K1, K2, K3 в (5), (7) каналов усилителя-преобразователя 12 справедливо
vотрo (18)
при

Значения коэффициентов усиления K1, K2, K3 каналов усилителя-преобразователя 12 устанавливаются на этапе юстировки так, чтобы для некоторых пробных искажений (10),(12) выполнялись условия (19),(21), и, следовательно, (18), что соответствует плоскому волновому фронту выходного лазерного пучка и полной компенсации дефокусировки и наклонов.

При наличии в лазерном пучке (1) наклонов и дефокусировки волнового фронта, изменяющихся со временем
Φ1(t)=C1(t)•x, (22)

выходные сигналы U1,U5 приемников излучения 8, 10 и, следовательно, управляющие сигналы динамической юстировочной головки 5 - V1, V2 и адаптивного зеркала 4 V3 также изменяются со временем, при этом работа лазерного адаптивного модуля представляет собой итерационный процесс достижения условий (2),(4), соответствующих компенсации дефокусировки и наклонов волнового фронта выходного излучения.

Похожие патенты RU2077068C1

название год авторы номер документа
АДАПТИВНЫЙ ОПТИЧЕСКИЙ МОДУЛЬ 1996
  • Сафронов Андрей Геннадьевич[Ru]
RU2084941C1
СПОСОБ ДОСТАВКИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ДВИЖУЩИЙСЯ ОБЪЕКТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Прилипко Александр Яковлевич
  • Павлов Николай Ильич
RU2541505C2
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ЛАЗЕРНОГО ПУЧКА 1994
  • Бородин В.Г.
  • Красов С.В.
  • Потапов С.Л.
  • Чарухчев А.В.
  • Веснин В.Н.
RU2083039C1
УСТРОЙСТВО НАПРАВЛЕННОЙ ТРАНСПОРТИРОВКИ СВЧ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 2009
  • Зворыкин Владимир Дмитриевич
  • Левченко Алексей Олегович
  • Сметанин Игорь Валентинович
  • Устиновский Николай Николаевич
RU2406188C1
АБЕРРОМЕТР С СИСТЕМОЙ ТЕСТИРОВАНИЯ ОСТРОТЫ ЗРЕНИЯ (ВАРИАНТЫ), УСТРОЙСТВО И СПОСОБ ЕГО НАСТРОЙКИ 2004
  • Ларичев Андрей Викторович
  • Ирошников Никита Георгиевич
  • Реснянский Артем Юрьевич
RU2268637C2
МНОГОФУНКЦИОНАЛЬНАЯ ОПТИКО-ЛОКАЦИОННАЯ СИСТЕМА 2008
  • Прилипко Алекандр Яковлевич
  • Павлов Николай Ильич
  • Чернопятов Владимир Яковлевич
RU2372628C1
СПОСОБ АДАПТИВНОЙ ВНУТРИРЕЗОНАТОРНОЙ ФАЗОВОЙ КОРРЕКЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2022
  • Богачев Владимир Александрович
  • Гаранин Сергей Григорьевич
  • Глухов Михаил Александрович
  • Колтыгин Михаил Олегович
  • Копалкин Александр Валентинович
  • Кузин Руслан Сергеевич
  • Стариков Федор Алексеевич
  • Шнягин Роман Анатольевич
RU2783630C1
СТАТИЧЕСКИЙ ФУРЬЕ-СПЕКТРОМЕТР 2010
  • Белаш Александр Олегович
  • Богачев Дмитрий Львович
  • Сениченков Василий Андреевич
  • Строганов Александр Анатольевич
RU2436038C1
Устройство для дистанционного измерения тепловых деформаций оптических элементов 1972
  • Кашпар Евгений Иванович
SU443250A1
СПОСОБ ВНУТРИРЕЗОНАТОРНОЙ КОРРЕКЦИИ НАКЛОНОВ ВОЛНОВОГО ФРОНТА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2021
  • Богачев Владимир Александрович
  • Гаранин Сергей Григорьевич
  • Глухов Михаил Александрович
  • Колтыгин Михаил Олегович
  • Кузин Руслан Сергеевич
  • Стариков Фёдор Алексеевич
  • Шнягин Роман Анатольевич
RU2781803C1

Иллюстрации к изобретению RU 2 077 068 C1

Реферат патента 1997 года ОПТИЧЕСКИЙ АДАПТИВНЫЙ МОДУЛЬ

Использование: для уменьшения расходимости излучения лазеров при их эксплуатации, а также для управления волновым фронтом лазерных пучков в оптических приборах и системах. Сущность изобретения: в оптическом адаптивном модуле в едином корпусе 1 последовательно расположены входное оптическое окно 2, корректирующее устройство, содержащее динамическую юстировочную головку 5 с расположенным в ней адаптивным зеркалом 4 и прямую разделительную призму 6, установленную так, что излучение, поступившее из входного окна 2 в корпусе 1, отразилось от адаптивного зеркала и направилось на ее первую катетную грань и, отразившись от нее, направилось в выходное окно 3 в корпусе 1, а прошедшее через нее излучение и отраженное от второй катетной грани направилось через линзы 7, 9 на два приемника 8, 10 излучения, подключенные к электронному усилителю-преобразователю 1, 2, выходы которого соединены с динамической юстировочной головкой 5. 5 ил.

Формула изобретения RU 2 077 068 C1

Оптический адаптивный модуль, содержащий корректирующее устройство, электронный усилитель-преобразователь, два приемника излучения, расположенных в фокусах линз, один из которых квадратный, а перед другим расположена точечная диафрагма, и светоделительную систему, при этом выходы приемников излучения соединены с входом электронного усилителя-преобразователя, выходы которого соединены с корректирующим устройством, отличающийся тем, что корректирующее устройство выполнено в виде динамической юстировочной головки и установленного в ней адаптивного зеркала, светоделительная система выполнена в виде прямоугольной призмы, первая катетная грань которой расположена в ходе луча, отраженного от адаптивного зеркала, линзы расположены в ходе луча, прошедшего через вторую катетную грань прямоугольной призмы в ходе луча, отраженного от нее, модуль снабжен входным оптическим окном, расположенным перед адаптивным зеркалом и выходным оптическим окном, расположенным в ходе луча, отраженного от первой катетной грани прямоугольной призмы, при этом оптические окна расположены в дополнительно введенном корпусе.

Документы, цитированные в отчете о поиске Патент 1997 года RU2077068C1

Воронцов М.А., Шмальгаузен В.И
Принципы адаптивной оптики
- М.: Наука, 1985, с.99 - 100
Там же, с.95-96.

RU 2 077 068 C1

Авторы

Икрамов А.В.

Сафронов А.Г.

Даты

1997-04-10Публикация

1992-12-07Подача