ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ Российский патент 1997 года по МПК H02M5/16 H01F38/02 

Описание патента на изобретение RU2077110C1

Изобретение относится к электротехнике и, в частности, к преобразовательной технике и трансформаторостроению, и может быть использовано в высокочастотных источниках вторичного электропитания для уменьшения их массы и габаритов.

Широко известны преобразователи частоты на полупроводниковых элементах (транзисторах и тиристорах), которые можно квалифицировать на преобразователи: а) с промежуточным звеном постоянного тока; б) с непосредственной связью питающей сети и цепей нагрузки; в) с искусственной коммутацией транзисторов и тиристоров (1).

Однако такие преобразователи имеют недостатки: низкие удельные показатели у преобразователей с промежуточным звеном постоянного тока, и, так как здесь необходимо вначале выпрямлять напряжение, затем это напряжение преобразовывать с помощью инвертора до нужной частоты, преобразователи с непосредственной связью могут использоваться только для получения напряжений более низкой частоты, чем частота питающей сети, преобразователи с искусственной коммутацией полупроводниковых ключей имеют сложную систему управления и сравнительно низкое качество выходного напряжения.

Наиболее близким по технической сущности к предлагаемому устройству является "Преобразователь частоты" (патент N 2006088 от 15.01.1994 г.), содержащий трансформатор, магнитопровод которого набран из N=2k+1, (где k=1,2,3,) сердечников с прямоугольной петлей магнитного гистерезиса, отличающихся друг от друга по коэрцитивной силе, первичную обмотку, которая одновременно охватывает все сердечники, вторичную обмотку, которая последовательно-встречно охватывает каждый из сердечников с равным числом витков и подключена на нагрузочное сопротивление.

Данное устройство позволяет осуществить преобразование входного напряжения с частотой f1 в выходное напряжение с частотой f2=п•f1, где п=2k+1, k= 1,2,3.

Однако проведенные макетные испытания выявили ряд существенных недостатков предложенной конструкции преобразователя, связанных, во-первых, с нагрузочной способностью преобразователя. С увеличением тока нагрузки работоспособность преобразователя резко снижается из-за возможности нарушения очередности (последовательности) перемагничивания сердечников, так как встречно-последовательное включение выходных обмоток сердечников вызывает взаимное влияние (наложение) электромагнитного процесса в одном сердечнике на другой. Требуются дополнительные схемные решения по развязке этих процессов. Кроме того, ухудшается форма выходного напряжения, снижается к.п.д. Внешняя характеристика преобразователя приобретает резко выраженный падающий характер. Сердечники магнитопровода значительно разогреваются. Представляется предпочтительнее использование данной схемы в маломощных устройствах (управление, связь, контроль, защита).

Во-вторых, недостатки предложенной конструкции связаны с технологичностью исполнения данной схемы. Сложно подобрать нужные магнитные материалы, отличающиеся друг от друга по коэрцитивной силе. В заводских условиях это сделать практически невозможно, так как нет разнотипных материалов нужного типоразмера. Представляется целесообразным изготовление магнитопровода трансформатора из одного типа магнитного материала.

Целью изобретения является повышение нагрузочной способности преобразователя частоты, улучшение качества его выходного напряжения.

Цель достигается тем, что в преобразователе частоты, содержащем трансформатор с составным магнитопроводом из N=2k+1, где k=1,2,3, сердечников из магнитного материала с прямоугольной петлей гистерезиса (ППГ), первичную и вторичную обмотки, все сердечники магнитопровода выполнены из одного и того же магнитного материала, где каждый сердечник последовательно-встречно охвачен разным числом витков первичной обмотки согласно выражению:
SkW1k=Sk+1•W1k+1,
где Sk сечение k-го сердечника;
W1k число витков первичной обмотки, охватывающих k-й сердечник, так, что в витках четных сердечников образуются противо-ЭДС одного знака, а в витках нечетных сердечников противоположного знака.

Каждый сердечник последовательно-согласно охвачен разным числом витков вторичной обмотки согласно выражению:
SkW2k=Sk+1•W2k+1,
где W2k число витков вторичной обмотки, охватывающих k-й сердечник, каждый сердечник, кроме последнего, охвачен двумя обмотками развязки , выходные концы которых через базовые сопротивления подключены к эмиттер-базовым переходам развязывающих транзисторов , образующих ключ с двухсторонней проводимостью и включенных между собой так, что эмиттер каждого транзистора через анод-катод диода подключен к коллектору другого транзистора, а коллекторы обоих транзисторов одновременно подключены к выходным концам выходной обмотки W2k+1 соответствующего k+1-го сердечника.

Это позволяет как в режиме холостого хода, так и при наличии нагрузки, осуществить процесс последовательного (друг за другом) перемагничивания однотипных сердечников магнитопровода с наперед заданной очередностью, что достигается использованием разного числа витков первичной обмотки на каждом сердечнике, включенных между собой встречно-последовательно. При этом в выходных обмотках преобразователя частоты формируются импульсы взаимо-ЭДС, сдвинутые относительно друг друга по фазе на угол
Φk+1 = kπ/N, (1)
где N общее число сердечников, k=1,2,3. равных по амплитуде, но противоположных по знаку. Для исключения нарушения установленной очередности перемагничивания сердечников магнитопровода и повышения нагрузочной способности преобразователя при перемагничивании четного сердечника в его обмотках развязки формируется управляющий импульс наведенной ЭДС открывающий один из транзисторов ключа с двухсторонней проводимостью и шунтирующего выходную обмотку последующего нечетного сердечника, и, наоборот, при перемагничивании нечетного сердечника шунтируется выходная обмотка последующего четного сердечника.

Таким образом, в предложенном преобразователе возможна реализация способа преобразования частоты входного напряжения в повышенную частоту выходного напряжения согласно выражению:
fвых=п•fвх, где п=2k+1, k=1,2,3, (2)
на однотипных сердечниках и повышение нагрузочной способности и работоспособности преобразователя посредством развязки электромагнитных процессов в сердечниках по времени.

На фиг. 1 представлена принципиальная электрическая схема преобразователя частоты; на фиг. 2 конструктивный чертеж трансформатора преобразователя частоты; на фиг. 3 кривые магнитного гистерезиса сердечников составного магнитопровода трансформатора и дифференциальной индуктивности намагничивающей обмотки каждого сердечника в функции тока намагничивания; на фиг. 4 эпюры входного напряжения, изменения магнитного потока в сердечниках магнитопровода для случая N=3, где N общее число сердечников в магнитопроводе, противо-ЭДС в намагничивающих обмотках по каждому сердечнику, выходного напряжения повышенной частоты и тока в нагрузке, а также тока намагничивания по каждому из сердечников в функции времени.

Принципиальная электрическая схема преобразователя частоты состоит из трансформатора с составным магнитопроводом из N=2k+1, (где k=1,2,3,) сердечников из магнитного материала с прямоугольной петлей магнитного гистерезиса (ППГ) с первичной и вторичной обмотками, все сердечники выполнены из одного и того же магнитного материала, где каждый сердечник последовательно-встречно охвачен разным числом витков первичной обмотки согласно выражению: Sk•W1k=Sk+1•W1k+1, где Sk сечение k-го сердечника; W1k число витков первичной обмотки, охватывающих k-й сердечник, так, что в витках четных сердечников образуются противо-ЭДС одного знака, а в витках нечетных сердечников - противоположного знака, каждый сердечник последовательно-согласно охвачен разным числом витков вторичной обмотки согласно выражению: SkW2k=Sk+1•W2k+1, где W2k число витков вторичной обмотки охватывающих k-й сердечник, каждый сердечник (кроме последнего) охвачен двумя обмотками развязки , входные концы которых через базовые сопротивления подключены к эмиттер-базовым переходам развязывающих транзисторов , образующих ключ с двухсторонней проводимостью и включенных между собой так, что эмиттер каждого транзистора через анод-катод диода подключен к коллектору другого транзистора, а коллекторы обоих транзисторов одновременно подключены к выходным концам обмотки W2k+1 соответствующего k+1-го сердечника.

На фиг.1-4 обозначено:
≈Uвх мгновенное переменное входное напряжение;
TVк трансформатор напряжения;
N=2k+1; k=1,2,3. число последовательно включенных по входу и выходу трансформаторов напряжения;
W1k намагничивающая обмотка k-го трансформатора напряжения;
W2k выходная обмотка k-го трансформатора;
блокирующая обмотка управления k-го ключа;
базовое сопротивление k-го ключа;
силовые транзисторы k-го ключа;
развязывающие диоды k-го ключа;
1,2,k,N номер сердечника;
Bи индукция, индукция насыщения;
ψк потокосцепление; Hμ напряженность магнитного поля намагничивания; iμ ток намагничивания;
Fμ= iμW МДС намагничивания;
Fc=Hclк МДС коэрцитивная; lk длина сердечника;
Lgk дифференциальная индуктивность обмотки от перемагничивания k-го сердечника;
Uп напряжение на нагрузочном сопротивлении rп;
Φ магнитный поток, FS магнитный поток насыщения;
t время; Т период Uвх;
l*1k

- противо-ЭДС в обмотке W1k от перемагничивания к-го сердечника;
iп ток нагрузки.

Предлагаемое устройство работает следующим образом: При подаче на первичную обмотку знакопеременного, например, прямоугольного напряжения Uвх=+U, по ней начинает протекать ток намагничивания iμ, а в каждой обмотке W, охватывающей k-й сердечник, образуется МДС перемагничивания, равные по величине Fμ= iμW, где k=1,2,3, которые осуществляют поочередное перемагничивание сердечников магнитопровода, сначала первого, затем второго и т.д. При этом в каждом сердечнике, например, при N=3 (фиг. 1), трансформатора TV появляется знакопеременный во времени магнитный поток Φ1, Φ2, Φ3, а во всех обмотках трансформатора возникают импульсы ЭДС;
а) противо-ЭДС в обмотках W1k - e*1k

от перемагничивания соответствующего k-го сердечника. Причем указанные импульсы ЭДС сдвинуты относительно друг друга по фазе на угол Φk+1 = kπ/N, где N общее число сердечников;
б) взаимо-ЭДС в обмотках от перемагничивания k-го сердечника. Указанные импульсы также сдвинуты относительно друг друга по фазе, но равны по амплитуде и противоположны по знаку;
в) взаимо-ЭДС в обмотках развязки от перемагничивания соответствующего k-го сердечника.

Для исключения нарушения очередности перемагничивания сердечников к каждой выходной обмотке W2k (кроме первой k=1) подключены шунтирующие ключи с двухсторонней проводимостью, состоящие из двух транзисторов , к базе-эмиттерному переходу которых через сопротивления подключены концы развязывающих обмоток с предыдущего сердечника и двух диодов .

Когда перемагничивается k-й нечетный сердечник, то с его развязывающих обмоток на транзисторы шунтирующего ключа четного сердечника поступает отпирающее напряжение, выходная обмотка Wz2k+1

шунтируется, что позволяет на время перемагничивания сечения Sk нечетного сердечника исключить какое-либо перемагничивание сечения Sk+1 последующего четного сердечника, т.е. развязать их электромагнитный процесс перемагничивания. Затем происходит перемагничивание четного сердечника, а выходная обмотка последующего нечетного сердечника шунтируется и т.д. до полного перемагничивания магнитопровода.

С целью выяснения процесса преобразования однофазного входного напряжения с частотой fвх в однофазное выходное напряжение с частотой fвых рассмотрим два основных режима работы предлагаемого преобразователя: режим холостого хода (ХХ) и режим нагрузки.

1. Режим холостого хода (zн = ∞).. "Эффект" поочередного (последовательного) перемагничивания сердечников магнитопровода достигается посредством использования разного числа витков первичной обмотки, охватывающих указанные сердечники при идентичности всех других параметров сердечников (N=3): l1=l2=l3; Hc1=Hc2=Hc3, где В - индукция; l длина сердечника; Нc коэрцитивная сила. Для выравнивания импульсов выходного напряжения по длительности требуется выполнить для сердечников с ППГ равенство (по первичной обмотке):

т.е.

S1W11=S2W12=S3W13 (4)
где S сечение сердечника;
Um амплитуда входного напряжения;
W1k число витков первичной обмотки, охватывающих k-й сердечник, k=1,2,3,
tпk время перемагничивания k-го сердечника от магнитного состояния в состояние , т.е. длительность импульса выходного напряжения.

Для выравнивания импульсов выходного напряжения по амплитуде требуется выполнить равенство (по вторичной обмотке):

где противо-ЭДС обмотки W1k от перемагничивания k-го сердечника,
т.е. S1W21=S2W22= S3W23,
где W21, W22, W23 число витков выходной обмотки, охватывающих соответственно 1,2,3 сердечники.

Тогда согласно закону полного тока в сердечниках трансформатора TV, охваченных витками W11, W12, W13, по которым протекает общий входной ток Iвх, возникают напряженности электромагнитного поля согласно выражению:

Первым начнет перемагничиваться тот сердечник, у которого напряженность H1k≥Hc, где k номер сердечника, т.е. больше или равна коэрцитивной силе и достаточна для начала его перемагничивания.

Пусть W11>W12>W13, тогда первым начнет перемагничиваться первый сердечник, так как H11≥Hc. К обмотке W11 прикладывается все напряжение .

Тогда на время перемагничивания первого сердечника все другие сердечники не перемагничиваются. Это происходит по той причине, что для второго (четного) и третьего последующего (нечетного) H12<Hc; H12<Hc. Покажем это.

Пусть ток Iвх, протекающий по обмоткам, достигнет величины, достаточной для перемагничивания первого сердечника .

C учетом разности витков W11>W12>W13, равенств l1=l2=l3; Hc=Hc1=Hc2=Hc3, получим


Последние выражения показывают, что при перемагничивании первого сердечника условия для перемагничивания второго и третьего сердечников в режиме ХХ еще не созданы.

Это происходит по той причине, что ток Iвх, достигнув значения Iвх=Ic= const, практически остается величиной неизменной на все время перемагничивания первого сердечника. Однако это не противоречит закону электромагнитной индукции. Происходит резкое увеличение дифференциальной индуктивности αд на вертикальном (восходящем) участке ППГ (фиг. За, точки 1-11, фиг. 3б, точка 1), а в выходной обмотке W21 возникает взаимо-ЭДС l*21

, равная по величине:

где дифференциальная индуктивность обмотки W11 от перемагничивания 1-го сердечника;
дифференциальная проницаемость магнитного материала первого сердечника с ППГ.

Следует указать, что дифференциальная проницаемость сердечников μд для магнитного материала с ППГ подчиняется условию:

На время перемагничивания первого сердечника в обмотках возникают импульсы взаимо-ЭДС , которые прикладываются к эмиттер-базовым переходам транзисторов ключа с двухсторонней проводимостью второго (четного) сердечника и шунтируют (коротят) выходную обмотку W22, соответственно и первичную обмотку W12, которая встречно-направлена обмотке W11 нечетного первого сердечника.

Экспериментальные исследования показывают, что в режиме ХХ либо при нагрузке, близкой к режиму ХХ (маломощные цепи), дополнительное использование развязывающих ключей совсем не обязательно. Схема прототипа надежно работает.

Только после перемагничивания первого сердечника ток Iвх в первичной обмотке скачком возрастает до значения начинается перемагничивание второго (четного) сердечника. В выходной обмотке W22 формируется импульс взаимо-ЭДС длительностью:

где Т период входного напряжения,
и амплитудой

противоположного знака относительно импульса взаимо-ЭДС от перемагничивания первого сердечника.

В обмотках развязки , охватывающих второй сердечник (четный) образуются взаимо-ЭДС для шунтирования выходной обмотки W23 охватывающей третий (нечетный) сердечник.

После перемагничивания второго сердечника ток Iвх в первичной обмотке скачком возрастает до значения начинается перемагничивание третьего (нечетного) сердечника.

В выходной обмотке W23 формируется импульс взаимо-ЭДС длительностью

и амплитудой

противоположного знака относительно импульса взаимо-ЭДС l*22

от перемагничивания второго сердечника. После перемагничивания третьего сердечника процесс преобразования полупериода входного напряжения с частотой fвх в частоту fвых=пfвх
где п=2k+1, k=1 заканчивается.

При смене полярности входного напряжения Uвх=-Um процесс поочередного перемагничивания сердечников повторяется в той же последовательности, но уже в обратную сторону то магнитного состояния (+Вs) к состоянию (-Вs). В выходных обмотках W21, W22, W23 формируются импульсы взаимо-ЭДС с частотой fвых, т. е. происходит преобразование частоты fвх отрицательного полупериода входного напряжения в частоту fвых=пfвых, где п=2k+1, k=1.

Если не учитывать потери напряжения на рассеяние, потери напряжения на омическом сопротивлении обмотки и потери напряжения на п/п элементах в прямом направлении, то согласно закону электромагнитной индукции для любого полупериода входного напряжения для преобразователя частоты справедлива система уравнений в режиме ХХ (математическая модель преобразования частоты в режиме ХХ):



,
где Н напряженность;
αд - дифференциальная индуктивность;
iвх входной ток;
l длина сердечника;
знак дифференцирования;
ψ - потокосцепление.

Последнее уравнение системы (14) составлено с учетом допущения, что базовые сопротивления для всех транзисторов преобразователя одинаковые по номиналу и не оказывают подмагничивающего действия на каждый предыдущий сердечник, т. е. rб достаточно велико, но достаточно для управления транзистором по току .

Из первого уравнения системы уравнений (14) получим выражение для скорости изменения тока холостого хода во времени, т.е.


Тогда выражения для определения составляющих противо-ЭДС в первичной обмотке W11, W12, W13 от перемагничивания идентичных сердечников 1,2,3, будет иметь вид:

где дифференциальная индуктивность;
k номер сердечника.

Зная величины l*11

, l*12
, l*13
в любой момент времени процесса трансформации, не трудно определить все другие ЭДС в обмотках трансформатора в виде:

2. Режим нагрузки (Zн ≠ ∞).

При включении нагрузочного сопротивления (например, активного rн) на выходные концы преобразователя по вторичным обмоткам W21, W22, W23, включенных согласно-последовательно потечет ток нагрузки iн, который вызовет образование разных по величине МДС реакции (нагрузки) согласно выражениям:

Однако, если бы все первичные W11, W12, W13 и все вторичные W21, W22, W23 обмотки были бы включены между собой согласно-последовательно, то ток нагрузки не вызвал бы нарушения очередности перемагничивания сначала первого, затем второго, затем третьего. Это происходило бы по той причине, что на время перемагничивания первого сердечника все другие сердечники не перемагничивались даже без использования развязывающих ключей.

В последнем случае из-за встречного включения намагничивающей первичной обмотки каждого нечетного сердечника и каждого четного сердечника ток нагрузки вызывает их одновременное перемагничивание.

Эксперимент показывает, что, чем больше ток нагрузки, тем больше проявляется "эффект" одновременного перемагничивания двух сердечников, первичные обмотки или вторичные обмотки которых включены встречно, а вторичные обмотки нагружены на сопротивление (активное, емкостное, индуктивное, смешанные).

Следовательно, на экране осциллографа можно увидеть, что импульсы взаимо-ЭДС от перемагничивания первого и второго сердечников чем больше ток нагрузки, тем больше по длительности взаимокомпенсируются (так как имеют разную полярность). Однако импульс взаимо-ЭДС с выходной обмотки W23 находится строго на своем месте согласно теории (изложенной выше) и сдвинут по фазе относительно начала любого полупериода на угол:

Поэтому с целью исключения нарушения процесса поочередного перемагничивания сердечников под нагрузкой предлагается на время перемагничивания нечетного сердечника, например, первого, закорачивать выходную обмотку (шунтировать) W22 четного второго сердечника. Это реализуется открытием одного из транзисторов открывающим напряжением с обмотки развязки . При этом входной ток не возрастает и ограничен величиной:

где ток перемагничивания первого сердечника;
ток нагрузки;
Uн напряжение на нагрузочном сопротивлении. После перемагничивания первого сердечника его индуктивное сопротивление исчезнет (так как ), начинает перемагничиваться второй четный сердечник. С обмоток развязки открывающее напряжение открывает один из транзисторов и шунтируется (закорачивается) выходная обмотка W23 последующего нечетного сердечника.

Входной ток ограничен величиной:

где ток перемагничивания второго сердечника;
ток нагрузки.

После перемагничивая второго сердечника начинает перемагничиваться третий сердечник. На данный момент индуктивное сопротивление первого и второго сердечника полностью исчезают (так как ). Поэтому при перемагничивании третьего сердечника энергия электромагнитного поля в сердечнике 1,2 не накапливается.

Входной ток ограничен величиной

где ток намагничивания третьего сердечника;
ток нагрузки.

Следовательно, в процессе поочередного (друг за другом) перемагничивания сердечников 1,2,3 ток намагничивания скачком принимает новое значение, достаточное для перемагничивания очередного сердечника (фиг. 4к).

При этом экспериментальные исследования показывают, что ток нагрузки в выходной обмотке может принимать разные значения и зависит от сопротивления нагрузки, а также сечения провода в первичной и вторичной обмотках. К.п.д. резко возрастает, исчезнет нагрев сердечников, внешняя характеристика преобразователя частоты принимает менее выраженный падающий характер. Трансформатор преобразователя изготавливается проще, так как использованы однотипные сердечники из магнитного материала одной марки (но обязательно с ППГ, так как при использовании непрямоугольной петли (например, линейной) процесс поочередного перемагничивания сердечников в принципе не может быть достигнут.

Преимущество преобразователя частоты по массогабаритным показателям наиболее проявляются на повышенных частотах входного напряжения, например, с целью преобразования выходного напряжения высокочастотных инверторов постоянного тока.

Недостатком предложенного преобразователя частоты является дополнительное использование развязывающих транзисторов и диодов и цепей управления ими.

Таким образом, в ходе реализации данной схемы преобразователя частоты стало возможным повышение его нагрузкой способности, улучшение качества его выходного напряжения, а также упрощение конструкции трансформатора посредством развязки по времени процессов перемагничивания сердечников составного магнитопровода и изготовления их из однотипного магнитного материала с прямоугольной петлей магнитного гистерезиса.

Похожие патенты RU2077110C1

название год авторы номер документа
ТРАНСФОРМАТОР СТАТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ 1994
  • Холин Сергей Николаевич
  • Афанасьев Станислав Николаевич
RU2083015C1
ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ 1991
  • Холин Сергей Николаевич
RU2006088C1
ТРЕХФАЗНЫЙ ТРАНСФОРМАТОР 1993
  • Холин Сергей Николаевич
  • Масленников Александр Сергеевич
RU2045790C1
ТРЕХФАЗНЫЙ ТРАНСФОРМАТОР 1993
  • Холин Сергей Николаевич
RU2046424C1
Стабилизирующий преобразователь напряжения постоянного тока 1990
  • Калашник Сергей Михайлович
  • Глуховский Виталий Николаевич
  • Ерастов Геннадий Алексеевич
  • Бураков Валерий Михайлович
  • Кузьмин Валерий Всеволодович
SU1705985A1
Самовозбуждающийся двухтактный транзисторный инвертор 1986
  • Маринин Сергей Юрьевич
  • Холин Сергей Николаевич
SU1403308A1
Самовозбуждающий инвертор 1984
  • Середа Юрий Алексеевич
  • Холин Сергей Николаевич
SU1241382A1
КОНТАКТНО-ДУГОВОЙ СВАРОЧНЫЙ АППАРАТ И СПОСОБ НАМОТКИ ЕГО ТОРОИДАЛЬНОГО СИЛОВОГО ТРАНСФОРМАТОРА 1993
  • Канаев Сергей Александрович
RU2111097C1
Двухканальный пропорционально-дифференциальный феррозонд 2023
  • Фоминых Алексей Михайлович
RU2817510C1
ТРАНСФОРМАТОР ИНВЕРТОРА 2001
  • Кириллов Н.П.
  • Матвеев С.С.
  • Березов В.В.
  • Рулев А.С.
RU2192065C1

Иллюстрации к изобретению RU 2 077 110 C1

Реферат патента 1997 года ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ

Использование: устройство относится к электротехнике. Сущность изобретения: устройство содержит трансформатор, магнитопровод которого состоит из N=2k+1, где k 1,2,3... сердечников, выполненных из одного и того же магнитного материала с прямоугольной петлей гистерезиса, где каждый сердечник по отдельности встречно-последовательно охвачен разным числом витков первичной обмотки W1k, где k - номер сердечника, согласно выражению SkW1k=Sk+1•W1k+1, где Sk - сечение k-го сердечника; W1k - число витков первичной обмотки, охватывающей k-й сердечник, каждый сердечник по отдельности согласно-последовательно охвачен разным числом витков вторичной обмотки W2k согласно выражению: Sk•W2k=Sk+1•W2k+1 каждый сердечник (кроме последнего) охвачен двумя обмотками развязки, выходные концы которых через базовые сопротивления подключены к эмиттер-базовым переходам развязывающих транзисторов и образующих ключ с двухсторонней проводимостью, включенных между собой так, что эмиттер каждого транзистора через анод-катод диода подключен к коллектору другого транзистора, а коллекторы обоих транзисторов одновременно подключены к выходным концам выходной обмотки соответствующего k+1 сердечника. Это позволяет как в режиме холостого хода, так и в режиме нагрузки осуществить последовательное (друг за другом) перемагничивание однотипных сердечников магнитопровода с наперед заданной очередностью и сформировать в выходных обмотках импульсы напряжения равных по амплитуде, противоположных по знаку и сдвинутых относительно друг друга на угол Φk+1 = k•π/N, где N - общее число сердечников в магнитоводе. 4 ил.

Формула изобретения RU 2 077 110 C1

Преобразователь частоты, содержащий трансформатор с составным магнитопроводом из N (где N 2k + 1, k 1, 2, 3) сердечников из магнитного материала с прямоугольной петлей гистерезиса (ППГ), с первичной и вторичной обмотками, отличающийся тем, что все сердечники магнитопровода выполнены из одного и того же магнитного материала с одинаковой петлей гистерезиса, где каждый сердечник последовательно-встречно охвачен разным числом витков первичной обмотки согласно выражения:
SkW1k Sk+1•W1k+1,
где Sk сечение k-го сердечника;
W1k число витков первичной обмотки, охватывающих k-й сердечник так, что в витках четных сердечников образуются противо-ЭДС одного знака, а в витках нечетных сердечников противоположного знака, каждый сердечник последовательно согласно охвачен разным числом витков вторичной обмотки согласно выражению
SkW2k Sk+1 • W2k+1,
где W2k число витков вторичной обмотки, охватывающих k-й сердечник, каждый k-й сердечник (кроме последнего) охвачен двумя обмотками развязки, выходные концы которых через базовые сопротивления подключены к эмиттер-базовым переходам двух развязывающих транзисторов, и образующих (k + 1)-й ключ с двусторонней проводимостью для шунтирования выходной обмотки (k + 1)-го сердечника, причем включенных между собой так, что эмиттер каждого транзистора через анод катод диода подключен к коллектору другого транзистора, а коллекторы обоих транзисторов одновременно подключены к выходным концам выходной обмотки соответствующего (k + 1)-го сердечника.

Документы, цитированные в отчете о поиске Патент 1997 года RU2077110C1

Розенблат М.А
Магнитные элементы автоматики и вычислительной техники
- М.: Наука, 1966, с.224 - 226, рис.6.30 - 6.32
Моин В.С., Лаптев Н.Н
Стабилизированные транзисторные преобразователи
- М.: Энергия, 1972, с.512
ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ 1991
  • Холин Сергей Николаевич
RU2006088C1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 077 110 C1

Авторы

Холин Сергей Николаевич

Афанасьев Станислав Николаевич

Козлов Алексей Николаевич

Даты

1997-04-10Публикация

1994-10-11Подача