СПОСОБ ОПРЕДЕЛЕНИЯ ЗАПАСА НАСАЖДЕНИЙ Российский патент 1997 года по МПК A01G23/00 

Описание патента на изобретение RU2080051C1

Изобретение относится к лесному хозяйству, в частности к оперативной оценке запаса древостоя на обширных площадях неучтенных территорий.

В системе древостоя вследствие взаимодействия особей между собой, конкуренции за свет, воду и питательные вещества пространственная структура подчиняется определенным закономерностям. Эффект взаимодействия деревьев и степень напряженности отношений особей друг с другом проявляются в самой структуре древесного ценоза. Пространственно-временная организация древесных ценозов чаще всего оценивается на основе учетных площадок путем подсчета особей и измерения расстояния между ними. Для пробных площадок путем индивидуального пересчета и наземных измерений получены функции распределения различных морфометрических характеристик древостоя: высоты деревьев; диаметров стволов по ступеням толщины; размеров крон [1]
В способе-аналоге разбивают площадь лесного массива на мозаику участков, проводят измерения таксационных параметров на пробном (ключевом) участке, рассчитывают запас насаждения участка по аналитической зависимости
M O • h • P,
где M объем запаса, м3;
h средняя высота насаждения, м;
P полнота насаждения;
O = ΣG•f произведение суммы площадей поперечных сечений деревьев на видовое число, м2 [2]
распространяют результаты оценок на всю площадь лесного массива.

Недостатком известных аналогов расчета запаса насаждений является большая трудоемкость, связанная с необходимостью учета и обмера каждого дерева на пробной площадке, неоперативность работ, недоступность горных и отдельных районов, погрешность при распространении результатов измерений отдельных участков на весь массив наблюдения.

Ближайшим аналогом по технической сущности к заявляемому способу является определение запаса насаждения по статистическим характеристикам древостоя известной площади таксируемого участка [3]
В ближайшем аналоге таксация проводится путем измерения средних расстояний между деревьями, расчета числа деревьев на таксируемой площади, замера суммы площадей сечений, определения параметров среднего дерева и вычисления на основе полученных данных запаса по всей площади древостоя.

Известный способ реализуется следующей последовательностью операций:
выбирают контрольный участок и определяют площадь таксируемого древостоя F;
измеряют расстояние a1 от случайно выбранного дерева до наиболее близкого, a2 до следующего ближайшего, a3. до третьего и т.д.

вычисляют среднеарифметическое расстояние до третьих ближайших деревьев исходя из результатов нескольких обмеров;
по величине выбирают по табличным данным (табл. 52, с. 347, ближайший аналог) поправочный коэффициент k3;
рассчитывают количество N деревьев на участке площадью F по зависимости

обрабатывают произведенные пересчеты, определяют сумму площадей сечений Σg, среднее дерево и его высоту ;
вычисляют запас M по аналитической зависимости (или номограмме) на участке

на основе полученных данных вычисляют запас на 1 га, а затем по всей площади древостоя.

Известный способ имеет следующие недостатки.

1. Необходимость проведения прямых, натурных измерений на местности и связанные с этим большая трудоемкость, неоперативность работ, неопределенность при выборе контрольных участков.

2. Недостаточная точность при распространении результатов единичных измерений запаса контрольных участков на весь лесной массив.

3. Возможность субъективных ошибок.

Задача, решаемая данным изобретением, заключается в преобразовании тональных и текстурных признаков изображения, получаемого дистанционным методом в характеристики электрического сигнала оцениваемого участка в виде коэффициентов варьирования функции интенсивности сигнала изображения и огибающей его пространственного спектра, вычисления запаса по параметрам анализируемого сигнала и последовательной оценки каждого участка изображения. При этом одновременно обеспечиваются преимущества, связанные с использованием космических технологий в виде повышения оперативности, производительности и глобальности получения целевой информации.

Поставленная цель достигается введением в ближайший аналог следующих технологических операций:
осуществляют съемку древостоя аэрокосмическими средствами и записывают полученные изображения на носитель (дискета, фотопленка, магнитная лента);
разбивают кадр на последовательность единичных участков и квантованием преобразуют функцию яркости изображения каждого участка в матрицу цифровых отсчетов пространственной зависимости яркости I(x,y) размерностью элементов;
вычисляют математическое ожидание и среднеквадратическое отклонение электрического сигнала матрицы;

вычисляют двумерный пространственный спектр сигнала матрицы с учетом линейных размеров участка снимка и его масштаба в соответствии с формулой

интегрируют двумерный пространственный спектр G (fx,fy) по кольцевым сегментам и получают огибающую пространственного спектра участка древостоя S (1/R);
разбивают интервал определения функции S (1/R) на пять классов Лорея и вычисляют диаметр кроны среднего дерева:

где ai удельный вес амплитуды гармоники пространственного спектра в его огибающей, соответствующий Di;
вычисляют запас насаждения анализируемого участка по следующей зависимости:

где M запас древостоя на участке, м3;
число деревьев на участке со средним диаметром кроны D1ср,
здесь F площадь анализируемого участка, равная линейным размерам изображения, умноженным на масштаб снимка, м2;
полнота насаждения, D2ср диаметр кроны среднего дерева, вычисленный по "шероховатости" полога D2cp≃ 1,3•(2σ)0,46;
площадь сечения среднего дерева участка, вычисляемая по статистическим зависимостям , d средний диаметр ствола среднего дерева, равный d,см ≃ 1,7D2,41cp

[м];
высота среднего дерева,
синтезируют из последовательно проанализированных единичных участков мозаичную картину запаса насаждений по всей площади наблюдения.

Сопоставительный анализ заявляемого решения с ближайшим аналогом показывает, что заявляемый способ отличается от известного введением новых технологических операций, обеспечивающих достижение свойств, закономерности которых не были известны и проявились в заявляемом объекте впервые. Действительно в ближайшем аналоге статистические характеристики древостоя исчисляются на основе непосредственных локальных измерений на местности, а в заявляемом способе запас исчисляется на основе расчета параметров электрического сигнала изображения, получаемого методом дистанционного зондирования. Основными информационными параметрами заявляемого способа являются коэффициент вариации амплитуды сигнала, связанный напрямую с "шероховатостью" растительного полога, и форма огибающей пространственного спектра, отражающая соотношение численности деревьев в древостое с различным диаметром крон. Это позволяет утверждать, что заявляемый способ удовлетворяет критерию "изобретательский уровень".

Наличие таких признаков, как вновь введенные операции, связанные с функциональными преобразованиями как тона, так и текстуры изображения, позволяющими извлекать информацию о "шероховатости" древесного полога и о спектральном составе древостоя в виде количества деревьев с определенным диаметром крон, позволяет сделать вывод о соответствии заявляемого технического решения критерию "существенные отличия".

Техническая сущность изобретения заключается в следующем. На настоящий момент основным селектируемым параметром при тематической обработке аэрокосмических снимков растительности является индекс цветности. Кривые спектральных коэффициентов яркости (КСЯ) у всех древесных пород имеют одни и те же закономерности и отличаются друг от друга на единицы процентов. Это затрудняет тематическую обработку изображений и достоверное выделение крон деревьев по индексу цветности. Кроме физиологических факторов состояния растительности на величину КСЯ оказывают существенное влияние и морфометрические параметры: архитектура растений, высота, форма крон, проективное покрытие, соотношение ярусов. Разряженность или густота полога, диаметры крон, их геометрическая повторяемость участвуют в формировании изображения и его крупных дискретных контрастных элементов, что отражается в качестве текстуры. Следовательно, целевую информацию о древостое содержит не только тон изображения, но и его текстура.

Тон изображения несет информацию о "шероховатости" древесного полога, длине крон, проективном покрытии, соотношении ярусов. В равновозрастном насаждении полог образуется деревьями разной высоты с наблюдаемыми эффектами сгущения (группирования) или разрежения в микроструктурах. Проявляющийся в распределении крон молодняков эффект притяжения деревьев переходит во взрослых сосняках в эффект расталкивания крон, смещения крон относительно ствола в сторону возникающих пустот. Поэтому "шероховатость" разновозрастных и спелых насаждений существенно выше "шероховатости" молодняка.

С другой стороны, текстура изображения несет в себе информацию о скрытых закономерностях древостоя, частоте повторения микроструктурных образований, распределении древостоя по диаметрам крон.

Таким образом, электрический сигнал изображения несет в себе всю информацию об интегральных таксационных характеристиках древостоя: распределения деревьев по диаметру крон, среднему числу деревьев на участке, полноте (шероховатости).

Распределение численности деревьев по диаметру крон основано на вычислении пространственного спектра соответствующего участка снимка. Из математики известно (Пискунов Н.С. Дифференциальное и интегральное исчисления. Т. 2. М. Наука, 1964, с. 240-242), что любая функция может быть разложена в интеграл Фурье. По определению, пространственный спектр вычисляется как двумерное Фурье-преобразование от функции I(x,y) интенсивности яркости участка изображения:

Данная операция реализуется на основе алгоритмов Быстрого Преобразования Фурье (БПФ) (Марпл С.А. Цифровой спектральный анализ. Перев. с англ. М. Мир, 1990, с. 77-79, алгоритм БПФ). Обычно двумерный Фурье-спектр псевдослучайных структур выглядит в виде расплывчатой эллиптической фигуры, размах которой характеризует их дисперсность. Следующий шаг анализа оценка вклада пространственных структур различного размера в вид огибающей. Интегрированием двумерного Фурье-спектра по кольцевым сегментам получают одномерную функцию пространственного спектра в функции от полярного радиуса S(I/R). Реализуемость данной операции отражена в работе "Система цифровой обработки изображений". "Видеолаб", МГУ, 1990. Технический отчет версии 2.1.-2.2, с. 63-65).

В результате программного расчета получают значения пространственного спектра, связанного с физическими размерами (длиной, шириной) введенного участка изображения. С учетом масштаба снимка получают характеристики реального пространственного спектра древостоя на участке. Амплитуда каждой гармоники пространственного спектра характеризует удельный вес деревьев с данным размахом крон. Разбивая область определения огибающей пространственного спектра на пять интервалов (классов ступеней толщины Лорея), вычисляют диаметр кроны среднего дерева насаждения:
,
где ai весовой коэффициент деревьев с данным диаметром крон, пропорциональный амплитуде соответствующей гармоники пространственного спектра.

На основе обширной статистики наблюдений (С.В. Белов, И.Д. Дмитриев, А. Е. Колосова. Аэрофотосъемка и авиация в лесном хозяйстве. Учебное пособие.- Всесоюзный заочный ЛТИ. Л. 1962, с. 145, табл. 15) методом детерминантов рассчитаны среднестатистические зависимости средней высоты и среднего диаметра ствола деревьев первой группы (сосна, береза, осина, ольха.)
h = 6,8•D1,11cp

, dcp= 1,7•D2,41cp
.
С увеличением числа деревьев на единице площади сомкнутость полога увеличивается. Практически при таксации полнота насаждения учитывается по степени сомкнутости крон. Чем больше сомкнутость крон, тем, очевидно, меньше "шероховатость" древесного полога. Следовательно, шероховатость полога содержит информацию о проективном покрытии или степени использования насаждением занимаемого им пространства. "Шероховатость" древесного полога оценивается среднеквадратическим отклонением σ функции яркости изображения (фиг. 1). Здесь представлены сечения двух типов насаждений по координате x с различной шероховатостью древесного полога. Чем больше "шероховатость" полога, чем больше разрывов в пологе, тем больше условная длина крон lк, равная 2σ.

Таким образом, интегральный эффект разреженности полога учитывается условной длиной lк= 2σ. Между длиной кроны и диаметром кроны существует среднестатистическая зависимость (Аэрофотосъемка и авиация в лесном хозяйстве. Учебное пособие. /Под ред. С.В.Белова. Всесоюзный заочный ЛТИ. Л. 1962, с. 347, табл. 2). Эта зависимость аппроксимирована степенной функцией вида D2cp= 1,3(2σ)0,46. Следовательно, полнота насаждения может быть рассчитана по соотношению средних площадей крон деревьев, вычисленных из огибающей пространственного спектра и "шероховатости" полога:

число деревьев на анализируемом участке составляет:

где F площадь анализируемого участка.

Запас древостоя на участке вычисляется по следующим статистическим зависимостям между параметрами сигнала и характеристиками насаждения:
.

Пример конкретного осуществления способа. Как следует из рассмотрения способа ближайшего аналога, для однозначного вычисления объема запаса древостоя необходимо измерение трех независимых параметров: числа деревьев N, среднего сечения ствола и высоты . Следовательно, для однозначного решения задачи по предлагаемому способу также необходимо измерение трех независимых параметров. Такими параметрами заявляемого способа являются: площадь анализируемого участка F, шероховатость древесного полога σ и огибающая пространственного спектра S(1/R). При этом связь между параметрами электрического сигнала анализируемого участка изображения и его таксационными характеристиками устанавливается на основе физических и статистических закономерностей. Площадь анализируемого участка F вычисляется путем умножения линейных (a х b) размеров изображения участка на масштаб снимка:
F=a•M x b•M, м2.

На фиг. 1 представлена одна из возможных реализаций функции пространственной зависимости I(x) древесного полога двух типов "шероховатости" s1 и σ2 На фиг. 2 приведены частотно-спектральные образы огибающих пространственных спектров S(I/R) единичных участков изображения космического снимка "Лосиный Остров", Москва, для трех типов растительности: хвойного леса, ельник "Пироговского лесопарка", с максимальным размахом крон 5,0 -7,0 м; смешанного леса р-на Гальяново; кустарник на болоте (осинник, березник, ивняк) р-на "Торфопредприятие" с минимальным размахом крон 0,3-0,5 м.

Заявляемый способ может быть реализован на базе комплекса программно-аппаратных средств по схеме фиг. 3.

Устройство фиг. 3, реализующее способ, содержит изображение 1 (фотоснимок, видеокадр) участков лесных массивов, которые посредством устройств ввода 2 последовательно преобразуются квантованием в файлы цифровой информации и записываются на гибкие магнитные диски 3. Информация одного анализируемого участка вводится в ПЭВМ 4 типа IBM PC/386/387 с набором периферийных элементов. Комплекс специализированных программ обработки изображений записывается в постоянное запоминающее устройство (ПЗУ) винчестер 5. Полученная в результате обработки снимков целевая информация отображается на дисплее 6 типа Super VGA и распечатывается в виде графиков и значений расчетных функций на принтере 7.

Процедуру оценки запаса насаждения по операциям заявляемого способа с помощью средств фиг. 3 проиллюстрируем на примере одного участка Пироговского лесопарка. Линейные размеры участка снимка соответствовали a x b 1 x 1 см. Масштаб космического снимка "Лосиный остров" соответствовал 1 55000. Снимок заказан в Госцентре "Природа" (заказ N 11/93-42 Руководства Госцентра Природа, исп. Тикунова). Участок снимка преобразуют в файл цифровой информации функции пространственной яркости I(X,Y) в формате 512 х 512 элементов. Операция преобразования изображения в файлы цифровой информации реализуется на средствах телеввода 2 (Система телеввода, Panasonic. Инструкция пользователю, техническое описание). Файлы цифровой информации записываются на гибкие магнитные диски 3 и последовательно считываются в ОЗУ процессора 4. Уровень квантования сигнала по амплитуде (тону) соответствовал 1/256. Среднее значение сигнала матрицы вычислялось по процедуре:

Среднеквадратическое значение сигнала соответственно по процедуре
.

Расчетное значение анализируемого участка: σ = 5,1.

От каждого массива цифровой информации файла вычислялся двумерный пространственный спектр, используя комплекс специализированных программ БПФ, содержащихся в ПЗУ процессора 4.

На фиг. 2а приведена огибающая пространственного спектра участка древостоя Пироговского лесопарка. Математическое ожидание, вычисленное по стандартному соотношению как сумма произведений значений огибающей на удельный вес каждой гармоники составит Σ Di•ai или диаметр кроны среднего дерева Д1ср= 2,4 м. С учетом вышеприведенных соотношений, полнота насаждения 0,4, а число деревьев со средним диаметром крон 2,4 м, N=26000 ед. Сечение ствола среднего дерева 13,5 см, высота среднего дерева , запас древостоя 6300 м3.

Эффективность заявляемого способа оценивается точностью расчета запаса насаждений путем сравнения его с аналогом. Для этого анализу подвергались те участки снимка "Лосиный Остров", по которым имеются точные таксационные описания (ключевые участки). В таблице представлены результаты оценок запаса насаждений ключевых участков, полученных путем наземной таксации и путем обработки их изображений.

Расхождение способов не превосходит 4% что является вполне допустимым для известных методов таксации.

Положительный эффект заявляемого способа основан на установлении зависимостей между специальными параметрами электрического сигнала изображения лесного массива и его таксационными характеристиками.

Похожие патенты RU2080051C1

название год авторы номер документа
СПОСОБ ОЦЕНКИ ЗАПАСА ДРЕВОСТОЯ 1998
  • Харин О.А.
  • Щербаков А.С.
  • Илларионов Г.П.
  • Мещерякова И.А.
  • Давыдов В.Ф.
RU2130707C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ЗАПАСА НАСАЖДЕНИЙ 2004
  • Давыдов Вячеслав Федорович
  • Чернобровина Ольга Константиновна
RU2277325C1
СПОСОБ ОЦЕНКИ ЗАПАСА ДРЕВОСТОЯ 1999
  • Давыдов В.Ф.
  • Харин О.А.
  • Щербаков А.С.
  • Запруднов В.И.
  • Мещерякова И.А.
RU2156567C1
СПОСОБ ТАКСАЦИИ НАСАЖДЕНИЙ 2000
  • Давыдов В.Ф.
  • Илларионов Г.П.
  • Шалаев В.С.
  • Комаров Е.Г.
  • Мухин А.С.
RU2183847C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛНОТЫ ДРЕВОСТОЕВ 2005
  • Давыдов Вячеслав Федорович
  • Корольков Анатолий Владимирович
  • Новиков Евгений Петрович
  • Тимонина Ксения Андреевна
RU2294622C2
СПОСОБ ОЦЕНКИ ЗАПАСА НАСАЖДЕНИЙ 1998
  • Давыдов В.Ф.
  • Щербаков А.С.
  • Комаров Е.Г.
  • Маковская О.Ю.
  • Ватковский О.С.
RU2133565C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ДЕРЕВЬЕВ В ЛЕСНОМ МАССИВЕ 2007
  • Давыдов Вячеслав Федорович
  • Корольков Анатолий Владимирович
  • Давыдова Светлана Вячеславовна
RU2359229C2
СПОСОБ ВЫЧИСЛЕНИЯ ЗАПАСА ЛЕСНЫХ МАССИВОВ 2003
  • Давыдов В.Ф.
  • Корольков А.В.
  • Гренц Н.В.
  • Шалаев В.С.
RU2242867C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВА НАСАЖДЕНИЙ 2008
  • Бондур Валерий Григорьевич
  • Черепанова Елена Валентиновна
  • Давыдов Вячеслав Федорович
  • Корольков Анатолий Владимирович
  • Галкин Юрий Степанович
RU2371910C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТАВА НАСАЖДЕНИЙ 2010
  • Бондур Валерий Григорьевич
  • Воробьев Владимир Евгеньевич
  • Черепанова Елена Валентиновна
  • Давыдов Вячеслав Федорович
  • Батырев Юрий Павлович
RU2428004C1

Иллюстрации к изобретению RU 2 080 051 C1

Реферат патента 1997 года СПОСОБ ОПРЕДЕЛЕНИЯ ЗАПАСА НАСАЖДЕНИЙ

Использование: лесное хозяйство, в оперативной оценке запаса древостоя на обширных площадях неучтенных территорий. Сущность изобретения: способ включает операции дистанционного получения изображения лесного массива, разбиения его на мозаику участков, последовательного преобразования функции яркости изображения участков в матрицу цифровых отсчетов пространственной зависимости яркости размерностью 512 х 512 элементов, вычисление характеристик электрического сигнала матрицы, математического ожидания среднеквадратического отклонения, огибающей пространственного спектра, по которым рассчитывают запас насаждения анализируемого участка
М = ,
где М - запас древостоя на участке, м3;
- число деревьев на участке с диаметром крон D1ср, здесь D1ср- диаметр кроны среднего дерева участка, вычисляемый по огибающей пространственного спектра , здесь ai - удельный вес (амплитуда) соответствующей гармоники пространственного спектра;
F - площадь анализируемого участка, равная линейным размерам участка снимка, умноженным на масштаб снимка;
P = D21cp

/D22cp
- полнота насаждения, здесь D2ср - диаметр кроны среднего дерева, вычисленный по статистической зависимости "шероховатости" полога, равная D2cp= 1,3(σ)0,46;
- площадь сечения и высота среднего дерева участка, вычисляемые по статистическим зависимостям и dcp,см ≃ 1,7D2,41cp
(M); h ≃ 6,8•D1,11cp
. 3 ил.

Формула изобретения RU 2 080 051 C1

Способ определения запаса насаждений, при котором разбивают площадь лесного массива на мозаику участков, вычисляют среднестатистические характеристики древостоя на участке, отличающийся тем, что получают изображение лесного массива, последовательно преобразуют функцию яркости изображения участков в матрицу цифровых отсчетов пространственной зависимости яркости размерностью (m x m) элементов, вычисляют характеристики электрического сигнала матрицы: математическое ожидание, среднеквадратическое отклонение σ, огибающую пространственного спектра, по которым рассчитывают запас насаждения анализируемого участка

где М запас древостоя на участке, м3;
число деревьев на участке с диаметром крон D1ср, где D1ср диаметр кроны среднего дерева участка, вычисляемый по огибающей пространственного спектра
где ai удельный вес амплитуды соответствующей гармоники пространственного спектра;
F площадь анализируемого участка, равная линейным размерам изображения, умноженным на масштаб снимка, м2;
полнота насаждения, где D2ср диаметр кроны среднего дерева, вычисленный по статистической зависимости "шероховатости" полога, D2cp≃ 1,3•(2σ)0,46;
площадь сечения среднего дерева участка, вычисляемая по статистическим зависимостям, м,
средний диаметр ствола среднего дерева,
высота среднего дерева, м,

Документы, цитированные в отчете о поиске Патент 1997 года RU2080051C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Анализ структуры древесных ценозов / Под ред
Д.М
Киреева
- Новосибирск: Наука, Сибирское отделение, 1985, с
Устройство для усиления микрофонного тока с применением самоиндукции 1920
  • Шенфер К.И.
SU42A1
Паровоз для отопления неспекающейся каменноугольной мелочью 1916
  • Драго С.И.
SU14A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Анучин Н.П
Лесная таксация
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Трансляция, предназначенная для телефонирования быстропеременными токами 1921
  • Коваленков В.И.
SU249A1
Анучин Н.П
Лесная таксация.- М.: Лесная промышленность, 1982, с
Способ получения жидкой протравы для основных красителей 1923
  • Комаров Н.Г.
  • Настюков А.М.
SU344A1

RU 2 080 051 C1

Авторы

Харин О.А.

Щербаков А.С.

Ватковский О.С.

Григорьева О.Ю.

Давыдов В.Ф.

Даты

1997-05-27Публикация

1995-05-09Подача