ИЗМЕРИТЕЛЬ ДАВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СРЕД Российский патент 1997 года по МПК G01L9/04 G01L19/04 

Описание патента на изобретение RU2082126C1

Изобретение относится к измерительной технике и может быть использовано в химической, нефтедобывающей, целлюлозной и других промышленностях для измерения давлений в высокотемпературных средах.

Известен измеритель того же назначения [1] содержащий датчик давления, капилляр, на торце которого через переходник закреплена приемная мембрана, при этом другой торец капилляра установлен в корпусе напротив мембраны датчика давления. Полости капилляра, переходников приемной мембраны и датчика давления заполнены ртутью.

Недостатком известного измерителя является влияние температуры среды на показания измерителя давления.

Наиболее близким техническим решением к изобретению является измеритель давления высокотемпературных сред с температурой компенсацией, содержащий датчик давления, включающий корпус с закрепленной в нем мембраной, на которой смонтированы контактные площадки, четыре тензорезистора, соединенные в мостовую измерительную схему, два термопреобразователя, находящиеся в тепловом контакте с датчиком давления, и измерительный блок, включающий источник питания со стабилизатором напряжения и выходной регистрирующий прибор, а также капилляр, на торцах которого через переходники закреплены приемная мембрана с диаметром, превышающим диаметр капилляра, и мембрана датчика давления, причем капилляр защищен металлорукавом, оканчивающимся щупом датчика давления, а полости капилляра, переходников и датчика давления заполнены ртутью [2]
В этом устройстве термокомпенсация осуществляется с помощью двух термопар, одна из которых расположена у приемной мембраны, а вторая около мембраны датчика давления. При этом обе термопары включены в смежные плечи мостовой измерительной схемы последовательно с тензорезисторами.

Недостатком известного устройства является недостаточная точность измерений давления из-за неполной компенсации температурной погрешности. Это происходит из-за того, что в прототипе термопреобразователи и датчик давления расположены в различных точках температурного поля, влияющего на результаты измерений. Кроме того, в известном решении отсутствуют термокомпенсация квадратичной составляющей температурной погрешности.

Технический результат, который может быть получен при осуществлении изобретения, заключается в более полной компенсации температурной погрешности измерителя, включая квадратичную составляющую температурной погрешности.

Данный технический результат достигается тем, что в известном измерителе давления высокотемпературных сред, содержащем датчик давления, включающий корпус с закрепленной в нем мембраной, на которой смонтированы контактные площади, четыре тензорезистора, соединенные в мостовую измерительную схему, два термопреобразователя, находящиеся в тепловом контакте с датчиком давления, и измерительный блок, включающий источник питания со стабилизатором напряжения и выходной регистрирующий прибор, а также капилляр, на торцах которого через переходники закреплена приемная мембрана с диаметром, превышающим диаметр капилляра, и мембрана датчика давления, причем капилляр защищен металлорукавом, оканчивающимся щупом датчика давления, а полости капилляра, переходников и датчика давления заполнены ртутью, термопреобразователи расположены на корпусе датчика давления, причем в измеритель дополнительно введены два сумматора, три дифференциальных усилителя, умножитель, источник опорных напряжений, звено обратной связи, выходной транзистор и выходной резистор, при этом оба термопреобразователя с одной стороны заземлены, а с другой подключены соответственно к первому входу умножителя и к первому входу первого дифференциального усилителя, выход стабилизатора напряжения подключен к входу мостовой измерительной схемы, через ограничительные сопротивления к термопреобразователям и к первому входу первого дифференциального усилителя, к второму входу которого подсоединен первый вход источника опорных напряжений, а второй его выход соединен с первым входом второго дифференциального усилителя, подключенного вторым своим входом к выходу умножителя, соединенного вторым своим входом с выходным резистором, который заземлен, причем положительная клемма источника соединена с коллектором выходного транзистора, эмиттер которого через выходной резистор подключен к защемленной отрицательной клемме источника питания, а первый выход мостовой измерительной схемы подключен к первому входу первого сумматора, второй вход которого соединен с выходом первого дифференциального усилителя, второй выход мостовой измерительной схемы подключен к первому входу второго сумматора, второй вход которого соединен с выходом второго дифференциального усилителя, а третий с выходом звена обратной связи, подключенного входом к эмиттеру выходного транзистора, выходы первого и второго сумматоров соединены соответственно с первым и вторым входами третьего дифференциального усилителя, выход которого подключен к базе выходного транзистора, при этом выходной регистрирующий прибор подключен параллельно выходному резистору.

На фиг. 1 представлена конструктивная схема измерителя давления высокотемпературных сред (ИДВС); на фиг. 2 общий вид полости капилляра, заполненной ртутью; на фиг. 3 электронная схема измерительного блока ИДВС.

Измеритель давления (фиг. 1, 2) содержит датчик 1 давления, установленный в корпусе 2, с закрепленной в нем мембраной 3, на которой смонтированы контактные площадки (на фиг. не показаны). В датчик давления также входят четыре тензорезистора (на фиг. не показаны), соединенные в мостовую измерительную схему 4 (фиг. 3). Диагональные плечи мостовой схемы подключены к контактным площадкам.

Имеются также два термопреобразователя 5 и 6 (фиг. 1), находящиеся в тепловом контакте с датчиком 1 давления за счет того, что они непосредственно намотаны на корпус датчика давления.

ИДВС также содержит приемную мембрану 7, которая вместе с мембраной 3 датчика давления соответственно через переходники 8, 9 (фиг. 2) перекрывает торцы капилляра 10. Полости капилляра и переходников заполнены ртутью. Капилляр 10 защищен металлорукавом 11.

Диаметр приемной мембраны 7 задают большим диаметром капилляра для уменьшения влияния линейного расширения ртути под действием высокой температуры среды.

Часть капилляра, непосредственно примыкающая к приемной мембране 7, заключают в металлический стержень (щуп) 12, который соединяется с металлорукавом 11. Щип 12, контактирующий с исследуемой средой, закрепляется на объекте (на фиг. не показан) с помощью гайки 13.

Измеритель также содержит измерительный блок 14, который через разъем 15 соединяется с выходным регистрирующим прибором 16 (фиг. 3).

Измерительный блок ИДВС включает в себя стабилизатор 17 источника питания (на фиг. не показан), два сумматора 18, 19, три дифференциальных усилителя 20, 21, 22, умножитель 23, источник 24 опорных напряжений, звено 25 обратной связи, выходной транзистор 26 и выходной резистор 27.

Схема электрических соединений элементов измерителя показана на фиг. 3 и описана выше.

Термопреобразователи 5, 6 подключены к стабилизатору 17 через ограничительные сопротивления R1, R2. Элементы 5, 6, 20, 21, 23, 24 образуют функциональный преобразователь 28.

Измеритель давления высокотемпературных сред работает следующим образом.

Располагают щуп 12 в исследуемой высокотемпературной среде. При этом на приемную мембрану 7 будут воздействовать давление исследуемой среды, передаваемое через капилляр, заполненный ртутью на мембрану датчика 1 давления.

Одновременно на щуп 12 будет воздействовать высокая температура (до 400oC) среды, нагревая его. За счет теплопроводности тепло от исследуемой среды по капилляру будет частично передаваться на корпус датчика давления, нагревая его до более низкой температуры по сравнению с температурой среды (примерно до 80oC).

При подаче измеряемого давления P на мембрану 9 тензорезисторы испытывают деформацию. Вследствие этого на выходе мостовой измерительной схемы 4 появляется сигнал ΔUp= Up1-Up2, равный
ΔUp= Up1-Up2= Uo[ao+a1Δt1+(a2Δt+a3)P] (1)
здесь U0 напряжение питания мостовой измерительной схемы;
a0 коэффициент смещения нуля;
a1 коэффициент температурного дрейфа нуля;
a2 коэффициент температурного дрейфа чувствительности;
Δt = t-to отклонение температуры в месте расположения тензорезисторов от значения t=t0, выбранной в качестве точки отсчета;
a3 тензочувствительность мостовой измерительной схемы при t=t0
p действующее давление.

Значение выходного напряжения на выходном резисторе 27 выходного транзистора 26 можно представить следующим образом
Uв= k(ΔUp+Ut1-Ut2) (2)
здесь k коэффициент усиления, определяемый звеном 25 обратной связи;
Ut1, Ut2 выходные напряжения, формируемые функциональным преобразователем 28 для компенсации влияния температурной погрешности.

Для полной компенсации температурной погрешности и смещения нуля функциональный преобразователь 28 из входных воздействий U0 UB должен синтезировать выходные напряжения Ut1 и Ut2 вида
Ut= Uo(ao+a1Δt); Ut2= βUв (3)
здесь β -масштабный коэффициент.

Из (1) и (2) с учетом (3) получим
Uв= kUo[(aoΔt+a3)P-βUв (4)
или

Из уравнения (5) следует, что для получения инвариантного к температурному воздействию выходного сигнала UB достаточно, чтобы выполнялось условие

Обеспечить такой масштаб преобразования позволяет функциональный преобразователь 28, выполненный в виде, представленном на фиг.3.

Изменение температуры термопреобразователей 5, 6 вызывает, например, изменение их сопротивления. При этом на выходах дифференциальных усилителей 20, 21 функционального преобразователя 28 появляются выходные сигналы Ut1, Ut2, которые, складываясь в необходимой пропорции с выходными сигналами Up1, Up2 мостовой измерительной схемы 4, позволяют реализовать инвариантный к температуре алгоритм работы измерителя давления. При этом значения давления исследуемой среды регистрируются выходным прибором 16.

Таким образом, в измерителе осуществляется более полная компенсация температурной погрешности за счет того, что тензорезисторы датчика давления и термопреобразователи находятся в одном и том же температурном поле. Кроме того, в измерителе не появляется дополнительная квадратичная составляющая температурой зависимости чувствительности, и происходит полная компенсация всех составляющих температурной погрешности тензорезисторной мостовой схемы. При этом питающая диагональ мостовой измерительной схемы свободна для организации подавления нелинейности выходной характеристики измерителя.

Похожие патенты RU2082126C1

название год авторы номер документа
ТЕНЗОМЕТРИЧЕСКИЙ ИЗМЕРИТЕЛЬ ДАВЛЕНИЯ 1993
  • Левцов Владимир Иванович
  • Королев Александр Иванович
RU2037145C1
ПОЛУПРОВОДНИКОВЫЙ ТЕРМОАНЕМОМЕТР 1992
  • Левцов Владимир Иванович
  • Власов Валерий Павлович
  • Королев Александр Иванович
RU2057347C1
Устройство для измерения параметров среды 1981
  • Дроздов Валентин Алексеевич
  • Костенко Сергей Петрович
  • Сафонов Владимир Александрович
SU1029011A1
ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ 2012
  • Куролес Владимир Кириллович
RU2502970C9
Датчик давления 1989
  • Зиновьев Виктор Александрович
  • Кузекмаев Андрей Васильевич
SU1663460A1
СПОСОБ ИЗМЕРЕНИЯ ДАВЛЕНИЯ ЖИДКОСТИ ИЛИ ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2022
  • Гайский Виталий Александрович
RU2789106C1
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ДАВЛЕНИЯ 1999
  • Рябов В.Т.
RU2165602C2
Цифровой измеритель температуры 1988
  • Щелканов Александр Иванович
SU1597602A1
Устройство для измерения давления 1990
  • Зиновьев Виктор Александрович
  • Кузекмаев Андрей Васильевич
  • Ворожбитов Анатолий Иванович
SU1744533A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ 1992
  • Маланин В.П.
  • Белозубов Е.М.
  • Умнов В.П.
RU2024831C1

Иллюстрации к изобретению RU 2 082 126 C1

Реферат патента 1997 года ИЗМЕРИТЕЛЬ ДАВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СРЕД

Использование: в измерительной технике и может быть использовано в химической, нефтедобывающей, целлюлозной и других промышленностях для измерения давлений в высокотемпературных средах. Сущность изобретения: тензометрический датчик 1 давления содержит капилляр 10, заполненный ртутью, через который исследуемое давление высокотемпературной среды воздействует на мембрану 7 датчика 1. Датчик 1 снабжен функциональным преобразователем с двумя термоприемниками, вырабатывающими напряжение, которые, складываясь в необходимой пропорции с выходными сигналами датчика, позволяют реализовать инвариантный к температуре алгоритм работы измерителя давления. 3 ил.

Формула изобретения RU 2 082 126 C1

Измеритель давления высокотемпературных сред, содержащий датчик давления, включающий корпус с закрепленной в нем мембраной, на которой смонтированы контактные площадки, четыре тензорезистора, соединенных в мостовую измерительную схему, два термопреобразователя, находящихся в тепловом контакте с датчиком давления, и измерительный блок, включающий источник питания со стабилизатором напряжения и выходной регистрирующий прибор, а также капилляр, на торцах которого через переходники закреплены приемная мембрана диаметром, превышающим диаметр капилляра, и мембрана датчика давления, причем капилляр защищен металлорукавом, оканчивающимся щупом датчика давления, а полости капилляра, переходников и датчика давления заполнены ртутью, отличающийся тем, что термопреобразователи расположены на корпусе датчика давления, причем в измерительный блок дополнительно введены два сумматора, три дифференциальных усилителя, умножитель, источник опорных напряжении, звено обратной связи, выходные транзистор и резистор, при этом оба термопреобразователя с одной стороны заземлены, а с другой подключены соответственно к первым входам умножителя и первого дифференциального усилителя, выход стабилизатора напряжения подключен к входу мостовой измерительной схемы, через ограничительные сопротивления к термопреобразователям и к первому входу первого дифференциального усилителя, к второму входу которого подсоединен первый выход источника опорных напряжении, а второй его выход соединен с первым входом второго дифференциального усилителя, подключенного вторым входом к выходу умножителя, соединенного вторым входом с выходным резистором, который заземлен, причем положительная клемма источника питания соединена с коллектором выходного транзистора, эмиттер которого через выходной резистор подключен к заземленной отрицательной клемме источника питания, а первый выход мостовой измерительной схемы подключен к первому входу первого сумматора, второй вход которого соединен с выходом первого дифференциального усилителя, второй выход мостовой измерительной схемы подключен к первому входу второго сумматора, второй вход которого соединен с выходом второго дифференциального усилителя, а третий с выходом звена обратной связи, подключенного входом к эмиттеру выходного транзистора, выходы первого и второго сумматоров соединены соответственно с первым и вторым входами третьего дифференциального усилителя, выход которого подключен к базе выходного транзистора, при этом выходной регистрирующий прибор подключен параллельно выходному резистору.

Документы, цитированные в отчете о поиске Патент 1997 года RU2082126C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ ИМПЛАНТАЦИИ ИСКУССТВЕННОГО ХРУСТАЛИКА ГЛАЗА ПРИ ОТСУТСТВИИ КАПСУЛЫ ХРУСТАЛИКА 1994
  • Зубарева Л.Н.
  • Марченкова Т.Е.
  • Овчинникова А.В.
RU2106126C1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ управления роботизированным транспортным средством 2021
  • Мельников Илья Алексеевич
RU2808469C2
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 082 126 C1

Авторы

Белогольский Владимир Андреевич

Левцов Владимир Иванович

Королев Александр Иванович

Даты

1997-06-20Публикация

1995-04-20Подача