СПОСОБ РЕГУЛИРОВАНИЯ ПОДАЧИ ТОПЛИВА В КАМЕРУ СГОРАНИЯ И КАМЕРА СГОРАНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 1997 года по МПК F23R3/28 F23D14/60 

Описание патента на изобретение RU2083928C1

Изобретение относится к энергетическому, транспортному и химическому машиностроению и может быть использовано в камерах сгорания газовых турбин, а также в других топливосжигающих устройствах.

Известен способ подачи топлива в камеру сгорания, заключающийся в том, что в момент пуска камеры сгорания топливо подают к горелкам под минимальным давлением, а затем по мере увеличения нагрузки увеличивают перепад давления топлива на горелках /1/.

В камерах сгорания расход топлива на номинальном режиме во много раз превышает расход при пуске. В то же время расход воздуха от пуска до номинального режима изменяется в значительно более узких пределах. Вследствие этого при использовании рассматриваемого способа регулирования коэффициент избытка воздуха в горелках изменяется в очень широком диапазоне. Это приводит к проблемам по обеспечению надежного пуска камеры сгорания, недожогу и высокой токсичности продуктов сгорания на долевых нагрузках.

Указанных недостатков в значительной мере лишен способ регулирования подачи топлива в камеру сгорания, заключающийся в том, что топливо подают сначала в горелки первого контура, а затем по мере увеличения нагрузки параллельно им подключают горелки второго и т.д. контуров. Как правило, во всех работающих контурах, кроме одного, поддерживают постоянные перепады давления топлива на горелках.

Недостатком этого способа является повышенная токсичность продуктов сгорания топлива на долевых нагрузках. Для обеспечения низкой токсичности продуктов сгорания при высокой полноте сгорания топлива необходимо сжигать смесь топлива и воздуха строго определенного оптимального состава. В рассматриваемом же способе регулирования расход топлива на горелки работающих контуров (кроме одного) остается постоянным, а расход воздуха при повышении нагрузки увеличивается, т. е. поддерживать постоянный оптимальный состав топливовоздушной смеси не удается. Это и приводит к повышенной токсичности продуктов сгорания и недостаточно высокой полноте сгорания топлива на долевых нагрузках.

Широко известны камеры сгорания, содержащие горелки, включающие топливораздающие и воздухонаправляющие устройства, топливный коллектор и клапан, регулирующий расход топлива на коллектор /2/.

Эта камера сгорания предназначена для осуществления первого из описанных выше способов сжигания топлива и обладает всеми присущими этому способу недостатками: сложностью обеспечения надежного пуска, недожогом и высокой токсичностью продуктов сгорания на долевых нагрузках.

Известна камера сгорания, содержащая два или более топливных контуров, состоящих из топливного коллектора и горелок, включающих топливораздающие и воздухонаправляющие устройства /2/.

Эта камера сгорания предназначена для осуществления второго из рассмотренных выше способов регулирования подачи топлива и, соответственно, имеет его недостатки: повышенную токсичность продуктов сгорания и недостаточно высокую полноту сгорания топлива на долевых нагрузках.

Задачей, на решние которой направлен предлагаемый способ регулирования подачи топлива в камеру сгорания, является снижение токсичности продуктов сгорания и повышение полноты сгорания топлива.

Целью, которая может быть получена при осуществлении заявляемого способа, является обеспечение низкой токсичности продуктов сгорания на всех режимах работы камеры сгорания, а также снижение расхода топлива на долевых нагрузках.

Задачей, на решение которой направлена предлагаемая камера сгорания, является осуществление предлагаемого способа регулирования подачи топлива в камеру сгорания. Целью, которая может быть получена при осуществлении предлагаемой камеры сгорания, является значительное снижение токсичности выхлопных газов на долевых нагрузках и создание всережимной малотоксичной камеры сгорания, а также снижение расхода топлива на долевых нагрузках.

Решение поставленной задачи и получение указанной цели достигается при осуществлении способа подачи топлива в камеру сгорания, заключающегося в том, что топливо подают сначала в горелки первого контура, а затем по мере увеличения нагрузки параллельно им подключают горелки второго и т.д. контуров, причем в отличие от прототипа, во всех работающих контурах горелок, кроме одного, поддерживают постоянные соотношения перепадов давления топлива и воздуха.

Известно, что расход топлива через топливораздающие устройства горелок пропорционален квадратному корню из соответствующего перепада давления. Поэтому поддерживая постоянные соотношения перепадов давления топлива и воздуха на горелках, тем самым поддерживают постоянные оптимальные коэффициенты избытка воздуха на всех режимах работы камеры сгорания и, следовательно, осуществляют процесс горения на всех режимах работы камеры сгорания с минимальной эмиссией токсичных веществ и максимальной полнотой сгорания топлива.

Решение поставленной задачи и достижение указанной цели достигается при реализации камеры сгорания, содержащей два или более топливных контуров, состоящих из топливного коллектора и горелок, включающих топливораздающие и воздухонаправляющие устройства, отличающейся от прототипа тем, что топливные коллекторы контуров последовательно сообщены каналами, на каждом из которых установлен клапан, регулирующий расход топлива из коллектора 1-го контура в коллектор (i+1)-го контура, причем управление клапаном осуществляется подвижным поршнем, разделяющим две камеры, одна из которых сообщена с воздушным пространством перед воздухонаправляющим устройством, а другая с топливным коллектором 1-го контура.

То, что топливные коллекторы контуров последовательно сообщены каналами, на каждом из которых установлен клапан, обеспечивает последовательное (во времени) включение топливных контуров в работу по мере увеличения нагрузки.

Поддержание постоянных соотношений перепадов давления топлива и воздуха на горелках каждого топливного контура обеспечивается тем, что управление клапаном, регулирующим расход топлива из коллектора i-го контура в коллектор (i+1)-го контура, осуществляется подвижным поршнем, разделяющим две камеры, одна из которых сообщена с воздушным пространством перед воздухонаправляющим устройством, а другая с топливным коллектором i-го контура. Поскольку и воздухонаправляющие устройства, и топливораздающие устройства на выходе сообщены с одним и тем же пространством зоной горения камеры сгорания, подвижный поршень находится, с одной стороны, под действием перепада давления на воздухонаправляющем устройстве, с другой стороны под действием перепада на топливораздающем устройстве. Если состав топливовоздушной смеси, т.е. соотношение расходов воздуха и топлива, а значит, и соотношение рассматриваемых перепадов давления нарушается, нарушается равновесие поршня, и он перемещается, открывая или закрывая регулирующий клапан до тех пор, пока равновесие не будет восстановлено. Более подробно процесс регулирования подачи топлива рассмотрен ниже при описании работы камеры сгорания.

Таким образом, на всех режимах работы камеры сгорания во всех топливных контурах, кроме одного, поддерживается постоянный оптимальный состав топливовоздушной смеси, обеспечивающий низкую токсичность продуктов сгорания при высокой полноте сгорания топлива.

На фиг. 1 и 2 даны продольный и поперечный разрезы предлагаемой кольцевой камеры сгорания; на фиг. 3 регулирующий клапан.

Камера сгорания (фиг. 1 и 2) содержит три топливных контура, состоящих из топливных коллекторов 1, выполненных в виде кольцевых коаксиальных стабилизаторов горения, и горелок, включающих топливораздающие устройства 2, выполненные в виде отверстий в торцевых стенках стабилизаторов-коллекторов, и воздухонаправляющие устройства 2, выполненные в виде отверстий в торцевых стенках стабилизаторов-коллекторов, и воздухонаправляющие устройства 3, выполненные в виде коаксиальных кольцевых лопаточных завихрителей. Топливные коллекторы последовательно сообщены каналами 4, на каждом из которых установлен клапан 5, регулирующий расход топлива из коллектора i-го контура в коллектор (i+1)-го контура. Управление клапаном осуществляется подвижным поршнем 6 (см. фиг. 3), разделяющим камеры 7 и 8. Камера 7 сообщена с помощью отверстия 9 с воздушным пространством перед воздухонаправляющим устройством 3, а камера 8 сообщена с помощью канала 10 с топливным коллектором i-того контура. Канал 11 сообщен с топливным коллектором (i+1)-того каскада. Поршень 5 имеет уравнительный шток 12, который через уплотнение 13 выходит через корпус 14 в воздушное пространство перед воздухонаправляющим устройством 3.

Кроме того, на фиг. 1 обозначено: 15 наружная и 16 внутренняя пламенные трубы, 17 топливоподводящая труба.

Способ регулирования подачи топлива в камеру сгорания осуществляется при работе камеры сгорания, которая заключается в следующем. Во время пуска камеры сгорания к горелкам подается воздух. На воздухонаправляющих устройствах 3 появляется перепад давления ΔPв, равный их гидравлическому сопротивлению, который воздействует на поршень 6 со стороны камеры 7. При этом поршень опускается в нижнее положение (как изображено на фиг. 3) и перекрывает канал 11. Это происходит в клапанах 5 2-го и 3-го топливных контуров.

Затем по топливоподводящей трубе 17 в топливный коллектор 1 первого каскада подают топливо и воспламеняют с помощью запального устройства (не показано) топливовоздушную смесь за горелкой первого каскада.

По мере увеличения нагрузки увеличивают расход топлива и, соответственно, растет перепад давления ΔPт на топливораздающих устройствах 2, равный их гидравлическому сопротивлению, который воздействует на поршень 6 со стороны камеры 8. В момент, когда топливовоздушная смесь за горелкой первого топливного контура достигает оптимального состава, силы, действующие на поршень 6 со стороны камеры 7 и со стороны камеры 8, выравниваются. Поскольку при оптимальном составе смеси, как правило, ΔPв<ΔPт, для выравнивания указанных сил необходимо, чтобы площади поверхностей, на которые воздействуют перепады ΔPв<ΔPт, были обратно пропорциональны этим перепадам. Именно для этой цели служат уравнительный шток 12 и уплотнение 13, уменьшающие площадь поверхности поршня, на которую воздействует больший перепад ΔPт.

При дальнейшем увеличении расхода топлива равновесие поршня нарушается, и он начинает перемещаться вверх, приоткрывая канал 11, через который часть топлива подается в коллектор второго контура. При этом поршень переместится ровно настолько, сколько необходимо, чтобы восстановилось его равновесие, т. е. чтобы восстановилось оптимальное соотношение давлений ΔPв и ΔPт, а следовательно, и оптимальный состав смеси в горелке первого контура.

При дальнейшем увеличении нагрузки расход топлива на второй контур увеличивается, а в горелке первого контура поддерживается оптимальный состав топливовоздушной смеси . В момент достижения оптимального состава смеси на горелке второго контура вступает в работу регулирующий клапан третьего контура, который работает аналогично клапану второго контура.

При выходе на номинальную нагрузку горелки всех контуров работают при оптимальном составе топливовоздушной смеси (на долевых нагрузках один контур работает с избытком воздуха больше оптимального, а остальные на смеси оптимального состава). При уменьшении нагрузки от номинальной до останова все описанные процессы протекают в обратном порядке.

Следует подчеркнуть, что при изменении нагрузки камеры сгорания меняется не только расход топлива, но и расход воздуха и, соответственно, Однако благодаря тому, что клапан 5 автоматически поддерживают соотношение , состав топливовоздушной смеси остается оптимальным независимо от величины ΔPв.

Как видно из представленных чертежей и описания изобретения, камера сгорания содержит элементы, широко применяемые в технике: коллекторы, лопаточные завихрители, поршневые клапаны. По этому ни с конструктивной, ни с технологической точки зрения возможность осуществления данного изобретения сомнений не вызывает.

Похожие патенты RU2083928C1

название год авторы номер документа
КАМЕРА СГОРАНИЯ 1993
  • Акулов В.А.
  • Виноградов Е.Д.
  • Захаров Ю.И.
  • Соколов К.Ю.
  • Сударев А.В.
  • Гутник М.Н.
RU2087805C1
КАМЕРА СГОРАНИЯ 1997
  • Виноградов Е.Д.
  • Захаров Ю.И.
  • Сударев А.В.
RU2116575C1
ГОРЕЛКА 1996
  • Виноградов Е.Д.
  • Захаров Ю.И.
  • Сударев А.В.
RU2099639C1
КАМЕРА СГОРАНИЯ 1992
  • Виноградов Е.Д.
  • Захаров Ю.И.
  • Соколов К.Ю.
  • Сударев А.В.
  • Орберг А.Н.
RU2027112C1
КАМЕРА СГОРАНИЯ 1999
  • Виноградов Е.Д.
  • Захаров Ю.И.
  • Сударев А.В.
  • Сурьянинов В.А.
RU2162194C1
ГОРЕЛКА 2007
  • Виноградов Евгений Дмитриевич
  • Захаров Юрий Иванович
RU2343352C1
ГОРЕЛКА КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1993
  • Постников А.М.
  • Маркушин А.Н.
  • Денисов И.С.
  • Савченко В.П.
RU2107869C1
КАМЕРА СГОРАНИЯ 1991
  • Акулов Владимир Алексеевич[Ru]
  • Виноградов Евгений Дмитриевич[Ru]
  • Захаров Юрий Иванович[Ru]
  • Соколов Константин Юрьевич[Ru]
  • Сударев Анатолий Владимирович[Ru]
  • Третьяков Сергей Иванович[Ru]
  • Веселы Станислав[Cs]
  • Послушны Густав[Cs]
RU2027111C1
ГОРЕЛКА 2007
  • Виноградов Евгений Дмитриевич
  • Захаров Юрий Иванович
  • Станислав Веселы
  • Густав Послушны
RU2348864C2
СПОСОБ СЖИГАНИЯ ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Виноградов Евгений Дмитриевич
  • Захаров Юрий Иванович
  • Станислав Веселы
  • Густав Послушны
RU2300702C1

Иллюстрации к изобретению RU 2 083 928 C1

Реферат патента 1997 года СПОСОБ РЕГУЛИРОВАНИЯ ПОДАЧИ ТОПЛИВА В КАМЕРУ СГОРАНИЯ И КАМЕРА СГОРАНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: в области энергетики, транспортном и химическом машиностроении, в частности, в камерах сгорания газовых турбин. Сущность изобретения: топливо подают сначала в горелки первого контура, а затем последовательно в параллельно им расположенные горелки следующих контуров, при этом во всех работающих контурах, кроме одного, поддерживают постоянные соотношения перепадов давления топлива и воздуха. 2 с.п. ф-лы, 3 ил.

Формула изобретения RU 2 083 928 C1

1. Способ регулирования подачи топлива в камеру сгорания путем подачи топлива сначала в горелки первого контура, а затем по мере увеличения нагрузки топливо последовательно подают в параллельно расположенные им горелки следующих контуров, отличающийся тем, что во всех работающих контурах, кроме одного, поддерживают постоянные соотношения перепадов давления топлива и воздуха. 2. Камера сгорания для регулирования подачи топлива в камеру сгорания, содержащая два или более топливных контуров, каждый из которых состоит из топливного коллектора и горелок с топливораздающими и воздухонаправляющими устройствами, отличающаяся тем, что содержит клапаны, регулирующие расход подачи топлива из коллектора i-го контура в коллектор (i + 1)-го контура, состоящие из двух камер, разделенных подвижным поршнем, одна из камер сообщена с воздушным пространством перед воздухонаправляющим устройством, а другая с топливным коллектором i-го контура, клапаны установлены на патрубках, посредством которых топливные контуры последовательно сообщены между собой.

Документы, цитированные в отчете о поиске Патент 1997 года RU2083928C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Тельнов К.А
и др
Автоматизация газоперекачивающих агрегатов с газотурбинным приводом
- Л.: Недра, 1983, с
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОГО ГЛИНОЗЕМА И ЕГО СОЛЕЙ ИЗ СИЛИКАТОВ ГЛИНОЗЕМА, ПРОСТЫХ ГЛИН И. Т.П. 1915
  • Кузнецов А.Н.
  • Жуковский Е.И.
SU280A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Сударев А.В., Маев В.А
Камеры сгорания газотурбинных установок
- Л.: Недра, 1990, с
ТЕЛЕФОННЫЙ АППАРАТ, ОТЗЫВАЮЩИЙСЯ ТОЛЬКО НА ВХОДЯЩИЕ ТОКИ 1920
  • Коваленков В.И.
SU274A1

RU 2 083 928 C1

Авторы

Виноградов Е.Д.

Захаров Ю.И.

Сударев А.В.

Даты

1997-07-10Публикация

1993-11-02Подача