ТЕПЛОВАЯ ТРУБА Российский патент 1997 года по МПК F28D15/04 

Описание патента на изобретение RU2083941C1

Изобретение относится к теплотехнике, в частности к теплообменным устройствам типа тепловой трубы с большими поверхностями нагрева, и предназначено преимущественно для охлаждения гаообразных сред.

Известны различные конструкции тепловых труб, в принципиальную схему которых входит корпус с заключенной внутри рабочей средой, испарительной поверхностью, конденсатором и транспортной зоной, а также фитильным слоем на внутренней поверхности [1] [2] [3] Эти известные конструкции отличаются в основном конструкцией и формой выполнения фитильного слоя, конденсатора, испарительной поверхности.

Недостатками тепловых труб такого типа являются:
ограниченное тепловосприятие от охлаждаемой среды, связанное с ограниченной перекачивающей способностью фитиля, незначительным перепадом давления между зонами испарительной поверхности и конденсатора, неиспользованием поверхности транспортной зоны и части конденсатор для тепловосприятия от охлаждаемой среды;
сложность конструкции, связанная, в частности, с фитильным слоем;
малые поверхности нагрева единичной тепловой трубы, связанные с малыми испарительными поверхностями, и, по причине этого, низкая пригодность для охлаждения значительных объемов охлаждаемых сред, в частности газовых сред.

Известны тепловые трубы с повышенной перекачивающей способностью фитиля, в частности, с фитильной матрицей в форме лопастей [4] с капиллярной (фитильной) структурой в виде спирали [5] и др.

Известны тепловые трубы с повышенным тепловосприятием за счет увеличения испарительных поверхностей и поверхностей конденсатора, например за счет расположения малых (вторичных) тепловых труб внутри большой (первичной) тепловой трубы, в которых нагревательная среда обогревает наружную тепловую трубу, вызывает испарение первичного теплоносителя и его конденсацию на наружной поверхности вторичных тепловых труб. При этом вторичный теплоноситель испаряется на внутренней стороне наружного корпуса вторичных тепловых труб и конденсируется на наружной стороне внутреннего корпуса этих труб, передавая теплообогревательному объему внутреннего корпуса [6] [7]
Недостатками известных тепловых труб такого типа являются:
сложность конструкции и технологические трудности изготовления;
малые поверхности нагрева единичной тепловой трубы и, связанная с этим низкая пригодность для охлаждения значительных объемов охлаждаемых сред, в частности газовых сред.

Известны тепловые трубы (теплообменные устройства) для повышенных объемов охлаждаемой среды, выполненные в виде панельной тепловой трубы с плоскими в виде полок теплообменными элементами, сообщающимися с впускным коллектором [8] в виде пучка тепловых труб, заполненных промежуточным теплоносителем и объединенных общими камерами в зоне испарения и в зоне конденсации [9]
Недостатками этих известных тепловых труб (теплообменных устройств) являются:
сложность конструкции устройства в целом и
низкое тепловосприятие от охлаждаемой среды, связанное с рассмотренными выше недостатками известной принципиальной конструкции отдельных объединенных в панели или пучки тепловых труб.

Известна выбранная в качестве ближайшего аналога (прототипа) тепловая труба термосифон, содержащая циркулирующую в трубе рабочую среду, секционированную испарительную поверхность и конденсатор, соединенный между собой парожидкостным коллектором, и транспортной зоной. При этом секции испарительной поверхности снабжены циркуляционными вставками и присоединены к коллектору через патрубки [10]
Вынесенные испарительные секции обеспечивают возможность создания большой поверхности нагрева единичной тепловой трубы, необходимой, в частности, для охлаждения больших объемов среды, например, газа.

Недостатками известной тепловой трубы являются:
сложность конструкции,
большие внутренние тепловые потери, связанные с наличием циркуляционных вставок и циркуляцией рабочей среды в тепловой трубе,
ограниченное тепловосприятие от охлаждаемой среды, связанное с ограниченной пропускной способностью парожидкостного коллектора и ограниченным диапазоном нагрева, при котором внутренняя циркуляция обеспечивает работоспособность испарительной секции, неиспользованием поверхности транспортной зоны и части конденсатора для тепловосприятия от охлаждаемой среды.

Задачей изобретения является упрощение конструкции тепловой трубы, уменьшение внутренних тепловых потерь и увеличение тепловосприятия от охлаждаемой среды.

Поставленная задача решается за чет того, что при использовании элементов известной конструкции тепловой трубы, содержащей циркулирующую в трубе рабочую среду, вынесенную секционированную испарительную поверхность, парожидкостный коллектор и конденсатор, в соответствии с изобретением секции испарительной поверхности выполнены бесфитильными и подключены непосредственно к коллектору, внутренние стенки коллектора имеют фитильное покрытие и конденсатор расположен внутри коллектора с выходом наружу через стенки коллектора.

Коллектор может состоять из двух и более секций, соединенных между собой патрубками и внутри секций коллектора расположены секции конденсатора, соединенные между собой последовательно за торцевыми стенками коллектора вне пределов тепловой среды.

Многосекционный коллектор имеет фитильное покрытие на внутренних сторонах стенок нижней и верхней секций.

Теплопередача от охлаждаемой среды и конденсатору в зоне расположения коллектора создает дополнительные поверхности теплообмена с эффективной теплопроводностью, что значительно повышает тепловосприятие от охлаждаемой среды.

Работа фитиля, покрывающего внутренние стенки коллектора, снабженного конденсатором из пара, вырабатываемого всей испарительной поверхностью, в значительной степени сводится к распределительной функции и требования к его перекачивающей способности, а значит и конструкции, снижаются без снижения надежности работы тепловой трубы. Тепловосприятие тепловой трубы не ограничивается ни перепадом давления по трубе, ни фитилем.

За счет упрощения конструкции фитиля, небольшой его поверхности, исключения сложностей, связанных с разделением охлаждаемой среды, например, газового объема и окружающей среды, значительно упрощается конструкция тепловой трубы и размещение ее в газовом объеме.

Предложенное техническое решение позволяет отказаться от циркуляционных вставок, что также упрощает конструкцию и уменьшает внутренние теплопотери.

На чертеже представлено поперечное сечение тепловой трубы.

Тепловая труба состоит из секционированной испарительной поверхности с секциями 2, двухсекционного коллектора 3 с нижней секцией 4 и верхней секцией 5. Секция 2 испарительной поверхности подключена к нижней секции 4 коллектора.

Внутри секций коллектора расположены секции 6 и 7 конденсатора 8, выходящие наружу через торцевые стенки коллектора и последовательно соединенные друг с другом. Секции 4 и 5 коллектора соединены между собой патрубками 9. Стенки нижней и верхней секций коллектора покрыты фитилем 10. Тепловая труба размещена в газоходе 11. Внутри тепловой трубы находится рабочая среда в жидкой и паровой фазе.

Тепловая труба работает следующим образом.

Под действием теплового потока от охлаждаемой среды, проходящей через газоход 11, жидкая фаза рабочей среды, расположенной в секциях 2 испарительной поверхности 1 и фитиле 10 испарителя. Пар рабочей среды конденсируется на стенках секций 6 и 7 конденсатора 8 и стекает на фитиль 10. Благодаря избыточному количеству жидкой фазы рабочей среды в фитиле обеспечивается надежный контакт ее со стенками нижней секции 4 и верхней секции 5 коллектора и теплоотвод от охлаждаемой среды. Фитиль при этом выполняет, главным образом, функции распределителя конденсатора между секциями испарительной поверхности 1 или патрубками 9, куда стекает конденсат с фитиля верхней секции 5 коллектора. Охлаждающая среда проходит внутри секций 6 и 7 конденсатора и, воспринимая тепло конденсации, нагревается.

Предлагаемая конструкция позволяет максимально использовать поверхность тепловой трубы, упросить ее за счет небольшого количества фитиля упрощенной конструкции, увеличить тепловосприятие от охлаждаемой среды за счет увеличения поверхности секций испарительной поверхности без ограничения перекачивающей способности фитиля и перепада давлений в тепловой трубе, а также снизить внутренние теплопотери.

Предлагаемая тепловая труба может быть полностью расположена в охлаждаемой среде, например, газоходе, где единичная тепловая труба с большими поверхностями нагрева может быть особенно эффективна при охлаждении газов с небольшим температурным напором.

Предлагаемое техническое решение полностью решает задачу, поставленную перед изобретением.

Техническое решение с предлагаемой совокупностью характеризующих его признаков на настоящее время не известно. Предлагаемое техническое решение отвечает требования критерия "новизна".

Тепловая труба в соответствии с предлагаемым техническим решением может быть изготовлена промышленным способом с использованием известных технических средств, стандартных комплектующих и материалов. Тепловая труба может эффективно использоваться в промышленности, в частности для охлаждения агрессивных газовых сред. Предлагаемое техническое решение отвечает требованиям критерия "промышленная применимость".

Предлагаемое техническое решение является оригинальным, выходит за рамки традиционных компоновочных решений, обеспечивает одновременное решение нескольких проблем и не вытекает очевидным образом из существующего уровня техники. Предлагаемое техническое решение отвечает требованиям критерия "изобретательский уровень".

Похожие патенты RU2083941C1

название год авторы номер документа
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО 2003
  • Абросимов Александр Иванович
RU2268450C2
ТЕПЛОУТИЛИЗАЦИОННЫЙ АГРЕГАТ-ОХЛАДИТЕЛЬ ОТХОДЯЩИХ ПЕЧНЫХ ГАЗОВ 1992
  • Добрынин В.В.
RU2104454C1
КОТЕЛ-УТИЛИЗАТОР 2002
  • Креков А.Г.
  • Гладышев А.Н.
  • Добрынин В.В.
  • Соболев В.И.
  • Казанбаев Л.А.
  • Козлов П.А.
RU2266467C2
ОСУШИТЕЛЬ ВОЗДУХА ГЕРМЕТИЧНЫХ ОТСЕКОВ КОСМИЧЕСКИХ АППАРАТОВ 1997
  • Федотов В.К.
  • Сарычев Л.Н.
  • Цихоцкий В.М.
RU2133920C1
КОНДЕНСАЦИОННОЕ УСТРОЙСТВО ПАРОВОЙ ТУРБИНЫ 1992
  • Осокин А.И.
RU2047071C1
УСТРОЙСТВО ДЛЯ ОСУШКИ ВОЗДУХА ГЕРМЕТИЧНЫХ ОТСЕКОВ КОСМИЧЕСКИХ АППАРАТОВ 1998
  • Федотов В.К.
RU2134857C1
ТЕПЛООБМЕННИК 1994
  • Артемов Н.С.
  • Симаненков Э.И.
  • Артемов В.Н.
  • Ильин В.П.
RU2080536C1
ВОДОГРЕЙНЫЙ КОТЕЛ 1993
  • Хомяков С.А.
  • Ворожцов М.С.
  • Гурков Д.М.
  • Алиев А.В.
  • Жебровский В.В.
  • Елькин М.И.
RU2018060C1
СПОСОБ КОСВЕННО-ИСПАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ ВОЗДУХА В ПОМЕЩЕНИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Деркач Н.В.
  • Попов Р.А.
  • Доброскок Н.Д.
RU2118758C1
ПАРОЖИДКОСТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА 1994
  • Атманов И.Т.
RU2081345C1

Реферат патента 1997 года ТЕПЛОВАЯ ТРУБА

Использование: в теплообменных устройствах типа тепловой трубы с большими поверхностями нагрева. Сущность изобретения: секции испарительной зоны подключены непосредственно к коллектору. Внутренние стенки коллектора имеют фитильные покрытие и конденсатор расположен внутри коллектора с выходом наружу через стенки коллектора. В преимущественном варианте исполнение коллектор состоит из двух или более секций. Они соединены между собой патрубками. Внутри каждой секции расположены секции конденсатора, соединенные между собой за стенками коллектора. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 083 941 C1

1. Тепловая труба, содержащая частично заполненный рабочей средой секционированный испаритель, парожидкостной коллектор и конденсатор, отличающаяся тем, что секции испарителя подключены к коллектору непосредственно, стенки его изнутри снабжены фитильным покрытием, а конденсатор расположен в его полости. 2. Труба по п.1, отличающаяся тем, что коллектор и конденсатор выполнены в виде секций и секции конденсатора расположены внутри секций коллектора, причем последние соединены между собой патрубками, а секции конденсатора сообщены между собой за пределами секций коллектора. 3. Труба по пп.1 и 2, отличающаяся тем, что патрубки снабжены фитилем.

Документы, цитированные в отчете о поиске Патент 1997 года RU2083941C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Лыков А.В
Тепломассообмен
Справочник
- М.: Энергия, 1971, с
Способ получения сульфокислот из нефтяных дестиллатов, минеральных масел, парафина или церезина, обработанных серною кислотою 1912
  • Петров Г.С.
SU460A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Термогравитационная тепловая труба 1977
  • Семена Михаил Григорьевич
  • Гершуни Александр Наумович
  • Колосовский Михаил Олегович
  • Николаенко Юрий Егорович
SU628401A1
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Патент США N 3834457, кл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Патент США N 3892273, кл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Патент США N 3811496, кл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Патент США N 3880230, кл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Патент США N 3955618, кл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Патент США N 4231423, кл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Радиатор 1974
  • Корниловский Евгений Михайлович
SU616518A1
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Вертикальная тепловая труба 1982
  • Иванов Олег Игоревич
  • Гамер Григорий Моисеевич
  • Фейгин Виктор Зиновьевич
  • Судаков Игорь Алексеевич
SU1091015A1
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1

RU 2 083 941 C1

Авторы

Фейгин В.З.

Буксеев В.В.

Корчагин Б.П.

Князев Н.В.

Даты

1997-07-10Публикация

1993-07-30Подача