Изобретение относится к теплотехнике, в частности к теплообменным устройствам типа тепловой трубы с большими поверхностями нагрева, и предназначено преимущественно для охлаждения гаообразных сред.
Известны различные конструкции тепловых труб, в принципиальную схему которых входит корпус с заключенной внутри рабочей средой, испарительной поверхностью, конденсатором и транспортной зоной, а также фитильным слоем на внутренней поверхности [1] [2] [3] Эти известные конструкции отличаются в основном конструкцией и формой выполнения фитильного слоя, конденсатора, испарительной поверхности.
Недостатками тепловых труб такого типа являются:
ограниченное тепловосприятие от охлаждаемой среды, связанное с ограниченной перекачивающей способностью фитиля, незначительным перепадом давления между зонами испарительной поверхности и конденсатора, неиспользованием поверхности транспортной зоны и части конденсатор для тепловосприятия от охлаждаемой среды;
сложность конструкции, связанная, в частности, с фитильным слоем;
малые поверхности нагрева единичной тепловой трубы, связанные с малыми испарительными поверхностями, и, по причине этого, низкая пригодность для охлаждения значительных объемов охлаждаемых сред, в частности газовых сред.
Известны тепловые трубы с повышенной перекачивающей способностью фитиля, в частности, с фитильной матрицей в форме лопастей [4] с капиллярной (фитильной) структурой в виде спирали [5] и др.
Известны тепловые трубы с повышенным тепловосприятием за счет увеличения испарительных поверхностей и поверхностей конденсатора, например за счет расположения малых (вторичных) тепловых труб внутри большой (первичной) тепловой трубы, в которых нагревательная среда обогревает наружную тепловую трубу, вызывает испарение первичного теплоносителя и его конденсацию на наружной поверхности вторичных тепловых труб. При этом вторичный теплоноситель испаряется на внутренней стороне наружного корпуса вторичных тепловых труб и конденсируется на наружной стороне внутреннего корпуса этих труб, передавая теплообогревательному объему внутреннего корпуса [6] [7]
Недостатками известных тепловых труб такого типа являются:
сложность конструкции и технологические трудности изготовления;
малые поверхности нагрева единичной тепловой трубы и, связанная с этим низкая пригодность для охлаждения значительных объемов охлаждаемых сред, в частности газовых сред.
Известны тепловые трубы (теплообменные устройства) для повышенных объемов охлаждаемой среды, выполненные в виде панельной тепловой трубы с плоскими в виде полок теплообменными элементами, сообщающимися с впускным коллектором [8] в виде пучка тепловых труб, заполненных промежуточным теплоносителем и объединенных общими камерами в зоне испарения и в зоне конденсации [9]
Недостатками этих известных тепловых труб (теплообменных устройств) являются:
сложность конструкции устройства в целом и
низкое тепловосприятие от охлаждаемой среды, связанное с рассмотренными выше недостатками известной принципиальной конструкции отдельных объединенных в панели или пучки тепловых труб.
Известна выбранная в качестве ближайшего аналога (прототипа) тепловая труба термосифон, содержащая циркулирующую в трубе рабочую среду, секционированную испарительную поверхность и конденсатор, соединенный между собой парожидкостным коллектором, и транспортной зоной. При этом секции испарительной поверхности снабжены циркуляционными вставками и присоединены к коллектору через патрубки [10]
Вынесенные испарительные секции обеспечивают возможность создания большой поверхности нагрева единичной тепловой трубы, необходимой, в частности, для охлаждения больших объемов среды, например, газа.
Недостатками известной тепловой трубы являются:
сложность конструкции,
большие внутренние тепловые потери, связанные с наличием циркуляционных вставок и циркуляцией рабочей среды в тепловой трубе,
ограниченное тепловосприятие от охлаждаемой среды, связанное с ограниченной пропускной способностью парожидкостного коллектора и ограниченным диапазоном нагрева, при котором внутренняя циркуляция обеспечивает работоспособность испарительной секции, неиспользованием поверхности транспортной зоны и части конденсатора для тепловосприятия от охлаждаемой среды.
Задачей изобретения является упрощение конструкции тепловой трубы, уменьшение внутренних тепловых потерь и увеличение тепловосприятия от охлаждаемой среды.
Поставленная задача решается за чет того, что при использовании элементов известной конструкции тепловой трубы, содержащей циркулирующую в трубе рабочую среду, вынесенную секционированную испарительную поверхность, парожидкостный коллектор и конденсатор, в соответствии с изобретением секции испарительной поверхности выполнены бесфитильными и подключены непосредственно к коллектору, внутренние стенки коллектора имеют фитильное покрытие и конденсатор расположен внутри коллектора с выходом наружу через стенки коллектора.
Коллектор может состоять из двух и более секций, соединенных между собой патрубками и внутри секций коллектора расположены секции конденсатора, соединенные между собой последовательно за торцевыми стенками коллектора вне пределов тепловой среды.
Многосекционный коллектор имеет фитильное покрытие на внутренних сторонах стенок нижней и верхней секций.
Теплопередача от охлаждаемой среды и конденсатору в зоне расположения коллектора создает дополнительные поверхности теплообмена с эффективной теплопроводностью, что значительно повышает тепловосприятие от охлаждаемой среды.
Работа фитиля, покрывающего внутренние стенки коллектора, снабженного конденсатором из пара, вырабатываемого всей испарительной поверхностью, в значительной степени сводится к распределительной функции и требования к его перекачивающей способности, а значит и конструкции, снижаются без снижения надежности работы тепловой трубы. Тепловосприятие тепловой трубы не ограничивается ни перепадом давления по трубе, ни фитилем.
За счет упрощения конструкции фитиля, небольшой его поверхности, исключения сложностей, связанных с разделением охлаждаемой среды, например, газового объема и окружающей среды, значительно упрощается конструкция тепловой трубы и размещение ее в газовом объеме.
Предложенное техническое решение позволяет отказаться от циркуляционных вставок, что также упрощает конструкцию и уменьшает внутренние теплопотери.
На чертеже представлено поперечное сечение тепловой трубы.
Тепловая труба состоит из секционированной испарительной поверхности с секциями 2, двухсекционного коллектора 3 с нижней секцией 4 и верхней секцией 5. Секция 2 испарительной поверхности подключена к нижней секции 4 коллектора.
Внутри секций коллектора расположены секции 6 и 7 конденсатора 8, выходящие наружу через торцевые стенки коллектора и последовательно соединенные друг с другом. Секции 4 и 5 коллектора соединены между собой патрубками 9. Стенки нижней и верхней секций коллектора покрыты фитилем 10. Тепловая труба размещена в газоходе 11. Внутри тепловой трубы находится рабочая среда в жидкой и паровой фазе.
Тепловая труба работает следующим образом.
Под действием теплового потока от охлаждаемой среды, проходящей через газоход 11, жидкая фаза рабочей среды, расположенной в секциях 2 испарительной поверхности 1 и фитиле 10 испарителя. Пар рабочей среды конденсируется на стенках секций 6 и 7 конденсатора 8 и стекает на фитиль 10. Благодаря избыточному количеству жидкой фазы рабочей среды в фитиле обеспечивается надежный контакт ее со стенками нижней секции 4 и верхней секции 5 коллектора и теплоотвод от охлаждаемой среды. Фитиль при этом выполняет, главным образом, функции распределителя конденсатора между секциями испарительной поверхности 1 или патрубками 9, куда стекает конденсат с фитиля верхней секции 5 коллектора. Охлаждающая среда проходит внутри секций 6 и 7 конденсатора и, воспринимая тепло конденсации, нагревается.
Предлагаемая конструкция позволяет максимально использовать поверхность тепловой трубы, упросить ее за счет небольшого количества фитиля упрощенной конструкции, увеличить тепловосприятие от охлаждаемой среды за счет увеличения поверхности секций испарительной поверхности без ограничения перекачивающей способности фитиля и перепада давлений в тепловой трубе, а также снизить внутренние теплопотери.
Предлагаемая тепловая труба может быть полностью расположена в охлаждаемой среде, например, газоходе, где единичная тепловая труба с большими поверхностями нагрева может быть особенно эффективна при охлаждении газов с небольшим температурным напором.
Предлагаемое техническое решение полностью решает задачу, поставленную перед изобретением.
Техническое решение с предлагаемой совокупностью характеризующих его признаков на настоящее время не известно. Предлагаемое техническое решение отвечает требования критерия "новизна".
Тепловая труба в соответствии с предлагаемым техническим решением может быть изготовлена промышленным способом с использованием известных технических средств, стандартных комплектующих и материалов. Тепловая труба может эффективно использоваться в промышленности, в частности для охлаждения агрессивных газовых сред. Предлагаемое техническое решение отвечает требованиям критерия "промышленная применимость".
Предлагаемое техническое решение является оригинальным, выходит за рамки традиционных компоновочных решений, обеспечивает одновременное решение нескольких проблем и не вытекает очевидным образом из существующего уровня техники. Предлагаемое техническое решение отвечает требованиям критерия "изобретательский уровень".
название | год | авторы | номер документа |
---|---|---|---|
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО | 2003 |
|
RU2268450C2 |
ТЕПЛОУТИЛИЗАЦИОННЫЙ АГРЕГАТ-ОХЛАДИТЕЛЬ ОТХОДЯЩИХ ПЕЧНЫХ ГАЗОВ | 1992 |
|
RU2104454C1 |
КОТЕЛ-УТИЛИЗАТОР | 2002 |
|
RU2266467C2 |
ОСУШИТЕЛЬ ВОЗДУХА ГЕРМЕТИЧНЫХ ОТСЕКОВ КОСМИЧЕСКИХ АППАРАТОВ | 1997 |
|
RU2133920C1 |
КОНДЕНСАЦИОННОЕ УСТРОЙСТВО ПАРОВОЙ ТУРБИНЫ | 1992 |
|
RU2047071C1 |
УСТРОЙСТВО ДЛЯ ОСУШКИ ВОЗДУХА ГЕРМЕТИЧНЫХ ОТСЕКОВ КОСМИЧЕСКИХ АППАРАТОВ | 1998 |
|
RU2134857C1 |
ТЕПЛООБМЕННИК | 1994 |
|
RU2080536C1 |
ВОДОГРЕЙНЫЙ КОТЕЛ | 1993 |
|
RU2018060C1 |
СПОСОБ КОСВЕННО-ИСПАРИТЕЛЬНОГО ОХЛАЖДЕНИЯ ВОЗДУХА В ПОМЕЩЕНИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2118758C1 |
ПАРОЖИДКОСТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА | 1994 |
|
RU2081345C1 |
Использование: в теплообменных устройствах типа тепловой трубы с большими поверхностями нагрева. Сущность изобретения: секции испарительной зоны подключены непосредственно к коллектору. Внутренние стенки коллектора имеют фитильные покрытие и конденсатор расположен внутри коллектора с выходом наружу через стенки коллектора. В преимущественном варианте исполнение коллектор состоит из двух или более секций. Они соединены между собой патрубками. Внутри каждой секции расположены секции конденсатора, соединенные между собой за стенками коллектора. 2 з.п. ф-лы, 1 ил.
Авторы
Даты
1997-07-10—Публикация
1993-07-30—Подача