СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ Российский патент 1997 года по МПК G01V3/08 

Описание патента на изобретение RU2084929C1

Изобретение относится к геоэлектроразведке и может быть использовано для проведения поисков геологических объектов, в частности углеводородов, методами становления электромагнитного поля.

Известен способ электроразведки [1] при котором зондирующий сигнал формируют в виде кода специальных частот с помощью решетчатой системы передающих электродов и индуктивных контуров, располагаемых над месторождениями углеводородов и зонами без месторождений, измеряют сигнал, наводимый в измерительных электродах и индуктивных антеннах, располагаемых внутри передающей системы, осуществляют с помощью процессора идентификацию изображения залежей и их анализ, после чего осуществляют разведочные измерения и определяют значения ресурсов для каждой точки измерения.

При таком способе геоэлектроразведки в исследуемой среде создаются вихревые токи, разноориентированные в основном в горизонтальных плоскостях, что затрудняет поиски протяженных тонких плохопроводящих объектов типа "залежь", которые эффективно выделяются с помощью зондирующего поля, ориентированного в вертикальной плоскости.

Известен наиболее близкий к предлагаемому способ геоэлектроразведки [2] заключающийся в том, что в исследуемой среде возбуждают электромагнитное поле путем осесимметричного введения электрического тока в Земле с помощью питающих электродов, один из которых располагают в центральной части окружности, образованный другими питающими электродами, измеряют параметры становления электрической составляющей поля по профилям, радиально расходящимся из центра окружности, и по результатам измерений судят о строении и свойствах исследуемой среды.

Способ позволяет создавать в исследуемой среде вихревые токи, замыкающиеся в основном в вертикальных плоскостях, что дает возможность с высокой разрешающей способностью выявлять объекты типа "залежь". Однако способ не эффективен в условиях перекрытия изучаемого объекта высокоомными экранами, т. е. там, где необходимо создавать в исследуемой среде вихревые токи, замыкающиеся в горизонтальных плоскостях. Комплексирование же такого способа с известными, например, с методом переходных процессов, приведет к неизбежному увеличению затрат на проведение дополнительных исследований. Таким образом, способ не обеспечивает одновременного возбуждения в исследуемой среде вихревых токов, замыкающихся как в вертикальных, так и в горизонтальных плоскостях, что не позволяет повысить разрешаемую способность геофизических исследований без увеличения энергетических затрат.

Патентуемое изобретение направлено на решение задачи повышения разрешающей способности геофизических исследований без увеличения энергетических затрат за счет обеспечения одновременного возбуждения в исследуемой среде вихревых токов, замыкающихся как в вертикальных, так и в горизонтальных плоскостях.

Сущность изобретения состоит в том, что в способе геоэлектроразведки, при котором исследуемую среду возбуждают путем введения электрического тока в Земле с помощью питающих электродов, один из которых, заземляют в центральной части окружности, образованной равномерной заземленными другими электродами, ток к которым подводят из центральной части окружности с помощью лучевых отрезков питающей линии, расположенных по радиусам окружности через равные углы, измеряют вдоль радиальных профилей параметры электрической составляющей электромагнитного поля, обусловленного реакцией исследуемой среды на возбуждение, и по полученным данным судят о свойствах исследуемой среды, предлагается подводить ток к заземленным по окружности питающим электродам от внешних концов лучевых питающих отрезков с помощью дополнительных отрезков питающей линии, имеющих одинаковую длину, кратную расстоянию по прямой или по дуге между соседними электродами, заземленными по окружности так, чтобы совокупность дополнительных отрезков питающей линии образовывала петлю, и измерять параметры магнитной составляющей электромагнитного поля.

В патентуемом способе подведение тока к каждому заземленному по окружности электроду с помощью соответствующих лучевого и дополнительного отрезков питающей линии позволяет одновременно возбуждать в исследуемой среде две взаимноортогональные конфигурации электромагнитного поля. При этом измерения электрической составляющей поля, осуществляемые вдоль радиальных профилей, будут свободны от влияния поля, индуцированного петлей, образованной всей совокупностью дополнительных отрезков питающей линии. В то же время результаты измерений магнитной составляющей будут обусловлены только полем, возбуждаемым этой петлей. Следовательно обеспечивается одновременное возбуждение в исследуемой среде вихревых токов, замыкающихся как в вертикальных так и в горизонтальных плоскостях, а также независимая регистрация составляющих электромагнитного поля, обусловленного этими вихревыми токами, что позволяет повысить разрешающую способность исследований без увеличения энергетических затрат.

Ни фиг. 1 и 2 приведены варианты реализации питающей установки для случаев, когда n<N и n≥N соответственно.

Установка, реализующая способ, содержит источник 1 питания, к одному полюсу которого подключен питающий электрод 2, заземленный в центре окружности, образованный равномерно заземленными питающими электродами 3, которые подключены к другому полюсу источника 1 питания с помощью соответствующих лучевых отрезков 4, расположенных через углы по радиусам окружности, и дополнительных отрезков 5, расположенных по окружности. Датчики 6 электрической составляющей поля располагаются осесимметрично, например, на радиальных профилях, являющихся продолжением лучевых отрезков 4 питающей линии. Каждый датчик 6 подключен к соответствующему измерителю 7 электрической составляющей поля. Датчики 8 магнитной составляющей поля располагаются осесимметрично, например, между профилями наблюдения электрической составляющей. Каждый датчик 8 подключен к соответствующему измерителю 9 магнитной составляющей поля.

В качестве источника 1 питания может быть использован генератор возбуждения, схема которого приведена в книге "Геофизические и геодезические методы и средства при поисках ископаемых в Сибири", СНИИГГиМС, 1982, с.46-50.

Лучевые отрезки 4 и дополнительные отрезки 5 питающей линии выполнены из геофизического провода ГПМП.

В качестве датчиков 6 электрического поля могут быть использованы, например, приемные линии, а в качестве датчиков 8 магнитного поля - измерительные петли или магнитометры.

В качестве измерителей 7, 9 электрической и магнитной составляющих поля могут быть использованы измерители электроразведочной аппаратуры "Цикл-4" (ТУ 41-04-1432-89).

Способ осуществляется следующим образом.

Перед началом работ, исходя из конкретной решаемой задачи, на основе результатов математического моделирования по априорным данным об исследуемом объекте либо по результатам предварительных экспериментальных работ, выбирают параметры питающей установки, а именно число N питающих электродов 3, равномерно заземляемых по окружности и величину радиуса R окружности, т.е. число и длину лучевых отрезков 4 питающей линии, длину l дополнительных отрезков 5 питающей линии, а также величины токов в питающей линии ток Iп петли, образуемой дополнительными отрезками 5 питающей линии, ток Iл в лучевых отрезках 4 питающей линии и ток Iн источника 1 питания.

Осесимметричное введение тока в Землю, являющееся одним из основных условий реализации предлагаемого способа, на практике может быть осуществлено при N≥6, поскольку начиная с N=6 заметно сказывается экспоненциальный характер затухания электрической составляющей электромагнитного поля. При этом верхний предел значений ограничен целесообразностью увеличения объема размоточных работ.

Величина R устанавливается в пределах 100oC1000 м в зависимости от заданной глубинности исследований. Величина токов Iп, Iл, Iн питающей установки также определяется глубинностью исследований и, кроме того, потенциальными возможностями используемого источника 1 питания.

Необходимо подчеркнуть, что в прелагаемом способе проводят исследования по методике вертикальных зондирований одновременно с исследованиями по методике становления поля, а в общем случае глубинность исследований по методике вертикальных зондирований, которая обеспечивается током Iл в лучевых отрезках 4 питающей линии, может не совпадать с глубинностью исследований по методике становления поля, которая обеспечивается током Iп петли. Поэтому осуществляют регулирование соотношения токов Iп и Iл с помощью коэффициента пропорциональности n. Очевидно также, что для обеспечения постоянства тока Iп петли длина l дополнительных отрезков 5 должна быть кратна расстоянию по прямой или по дуге между соседними электродами 3, заземленными по окружности, т.е. в последнем случае кратна величине 2πR/N и составляет.


При этом ток Iп петли определяется по формуле:

где n 1, 2, 3.

Верхний предел значений коэффициента n ограничен увеличением сопротивлений проводов дополнительных отрезков 5. В зависимости от выбранного значения коэффициента n возможны два варианта соотношения токов Iп и Iн:
Iп<Iн при n<N
Iп≥Iн при n ≥N,
которым соответствуют варианты реализации питающей установки, приведенные на фиг. 1, 2.

Так, например, в условиях геоэлектрического разреза, типичного для Восточного края Западно-Сибирской плиты, где суммарная проводимость до фундамента составляет 300-400 Сим, а глубина до фундамента не превышает 2000 м, как показывают теоретические исследования и натурные эксперименты, необходимо обеспечить следующие значения параметров питающей установки:
R=500м; N=6; Iп= Iн=60А; n=6; l=3140 м,
что соответствует варианту реализации питающей установки, приведенному на фиг. 2, где петля образуется шестижильным кабелем, каждая жила которого, представляющая дополнительный отрезок 5 питающей линии, разорвана и подключена одним выводом к соответствующему питающему электроду 3, а другим выводом связана с внешним концом ближайшего лучевого отрезка 4 питающей линии.

После определения параметров питающей установки производят ее монтаж на исследуемом участке и возбуждают в объекте исследования электромагнитное поле путем введения в Землю электрического тока, генерируемого источником 1 питания и подводимого к заземленным по окружности электродам 3 с помощью лучевых отрезков 4 и дополнительных отрезков 5 питающей линии. По выключении тока в питающей линии производят измерения параметров электромагнитного поля, обусловленного реакцией исследуемой среды на возбуждение. При этом электрическая составляющая фиксируется датчиками 6, представляющими в данном случае приемные линии длиной не менее 500 м, и измеряется в измерителях 7. Результаты измерений радиальной электрической составляющей обусловлены только полем, создаваемым лучевыми отрезками 4 питающей линии, и не зависят от поля, создаваемого петлей, образованной совокупностью дополнительных отрезков 5. Магнитная составляющая фиксируется датчиками 8, представляющими в данном случае приемные петли с эффективной площадью 500000 м2 (например 3 витка 400х400 м), и измеряется с помощью измерителей 9. Результаты измерений вертикальной магнитной составляющей в случае горизонтально-слоистого разреза определяется только полем, создаваемым петлей, которая образована совокупностью дополнительных отрезков 5 питающей линии, и не зависят от поля, создаваемого лучевыми отрезками 4 питающей линии. Данные, полученные при измерениях электрической составляющей интерпретируются, например, по методике, приведенной в статье Могилатова В.С. "Круговой электрический диполь новый источник для электроразведки", Физика земли, N 6 с.97-106. Данные магнитных измерений могут быть интерпретированы согласно типовой методике ЗСБ-МПП.

Результаты интерпретации магнитных и электрических измерений, полученные одновременно, позволяют с высокой степенью достоверности выявлять как объекты изучения, перекрытые высокоомными экранами, так и объекты типа "залежь", что повышает разрешающую способность геофизических исследований без увеличения энергетических затрат.

Похожие патенты RU2084929C1

название год авторы номер документа
СПОСОБ ПРЯМЫХ ПОИСКОВ ЛОКАЛЬНЫХ ОБЪЕКТОВ 1995
  • Могилатов Владимир Сергеевич
  • Балашов Борис Петрович
RU2112995C1
СПОСОБ ПРЯМЫХ ПОИСКОВ ГЕОЛОГИЧЕСКИХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Могилатов Владимир Сергеевич
  • Балашов Борис Петрович
RU2028648C1
СПОСОБ ПРЯМОГО ПОИСКА ЛОКАЛЬНЫХ ОБЪЕКТОВ НА ШЕЛЬФЕ МИРОВОГО ОКЕАНА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ В ОТКРЫТОМ МОРЕ 1995
  • Балашов Борис Петрович
  • Могилатов Владимир Сергеевич
RU2116658C1
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Могилатов Владимир Сергеевич
  • Балашов Борис Петрович
RU2453872C1
СПОСОБ ПРЯМОГО ПОИСКА ГЕОЛОГИЧЕСКИХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Балашов Борис Петрович
  • Могилатов Владимир Сергеевич
  • Захаркин Александр Кузьмич
  • Саченко Георгий Васильевич
  • Секачев Михаил Юрьевич
RU2111514C1
УСТРОЙСТВО ДЛЯ ПРЯМОГО ПОИСКА ГЕОЛОГИЧЕСКИХ ОБЪЕКТОВ 2011
  • Балашов Борис Петрович
  • Могилатов Владимир Сергеевич
  • Паули Анатолий Иоганович
RU2454683C1
СПОСОБ МОРСКОЙ ЭЛЕКТРОРАЗВЕДКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Балашов Борис Петрович
  • Могилатов Владимир Сергеевич
RU2434251C1
СПОСОБ ПОИСКА ТРЕХМЕРНЫХ ОБЪЕКТОВ МЕТОДАМИ ГЕОЭЛЕКТРИКИ ТМ-ПОЛЯРИЗАЦИИ 2019
  • Злобинский Аркадий Владимирович
  • Могилатов Владимир Сергеевич
RU2733095C2
СПОСОБ ПРЯМОГО ПОИСКА УГЛЕВОДОРОДОВ МЕТОДАМИ ГЕОЭЛЕКТРИКИ 2019
  • Злобинский Аркадий Владимирович
  • Могилатов Владимир Сергеевич
RU2721475C1
Способ электроразведки для изучения трехмерных геологических структур 2017
  • Могилатов Владимир Сергеевич
  • Злобинский Аркадий Владимирович
RU2676396C1

Иллюстрации к изобретению RU 2 084 929 C1

Реферат патента 1997 года СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ

Использование для проведения геофизических исследований методами становления электромагнитного поля. Сущность изобретения: исследуемую среду возбуждают путем введения электрического тока в Земле с помощью питающих электродов. Один из электродов заземляют в центральной части окружности, образованной равномерно заземленными другими электродами. Ток к последним подводят из центральной части окружности с помощью расположенных по радиусам окружности через равные углы лучевых отрезков и дополнительных отрезков питающих линии. Дополнительные отрезки имеют одинаковую длину, кратную расстоянию по прямой или по дуге между соседними электродами. Последние заземлены по окружности так, что совокупность дополнительных отрезков питающих линий образует петлю. Одновременно измеряют параметры радиальной электрической и вертикальной магнитной составляющих электромагнитного поля. О свойствах исследуемой среды судят по лучевым данным. 2 ил.

Формула изобретения RU 2 084 929 C1

Способ геоэлектроразведки, при котором исследуемую среду возбуждают путем введения электрического тока в землю с помощью питающих электродов, одни из которых заземляют в центральной части окружности, образованной равномерно заземленными другими электродами, ток к которым подводят из центральной части окружности с помощью лучевых отрезков питающей линии, расположенных по радиусам окружности через равные углы, измеряют вдоль радиальных профилей параметры электрической составляющей электромагнитного поля, обусловленного реакцией исследуемой среды на возбуждение, и по полученным данным судят о ее свойствах, отличающийся тем, что к заземленным по окружности питающим электродам ток от внешних концов лучевых отрезков питающей линии подводят с помощью дополнительных отрезков питающей линии, имеющих одинаковую длину, кратную расстоянию по прямой или по дуге между соседними электродами, заземленными по окружности так, что совокупность дополнительных отрезков питающей линии образует петлю, и измеряют параметры магнитной составляющей электромагнитного поля.

Документы, цитированные в отчете о поиске Патент 1997 года RU2084929C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Свариваемый жаропрочный сплав на основе молибдена 1968
  • Моргунова Н.Н.
  • Ласточкин Р.Р.
  • Клыпин Б.А.
  • Тараканов Л.А.
  • Бояршинов В.А.
  • Гусева Е.А.
  • Кушлянская Р.А.
SU254097A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ геоэлектроразведки 1982
  • Могилатов Владимир Сергеевич
SU1062631A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 084 929 C1

Авторы

Могилатов Владимир Сергеевич

Балашов Борис Петрович

Даты

1997-07-20Публикация

1993-03-24Подача