Изобретение относится к обмоткам электрических трехфазных машин переменного тока асинхронных и синхронных.
Известны трехфазные симметричные обмотки электрических машин переменного тока с целым числом пазов (z) на полюс (p) и фазу(m 3) q z/6p ц.ч. выполняемые однослойными, двухслойными и одно-двухслойными [1] Наиболее простыми из них в изготовлении являются однослойные и при выполнении их в виде шаблонной равнокатушечной или концентрической содержат 3p катушечных групп с q катушками соседних пазов в каждой. Они имеют повышенный расход обмоточного провода, так как газ по пазам yп их катушек эквивалентен диаметральному (yп= 3q), и характеризуются высоким содержанием гармонических в кривой МДС, что увеличивает дифференциальное рассеяние обмоток и снижает энергетические показатели машин с такими обмотками.
Наиболее близкой к предлагаемой по выполнению является однослойная концентрическая обмотка "вразвалку", в которой каждая катушечная группа при выходе из пазов делится на две половины (подгруппы) и их лобовые части отгибаются в разные стороны [3] Такая обмотка выполняется обычно при четных значениях q≥4, содержит 6p катушечных подгрупп и имеет меньший расход обмоточного провода, но в электромагнитном отношении шаг ее катушек эквивалентен диаметральному и поэтому ее дифференциальное рассеяние одинаково с шаблонными и концентрическими обмотками.
Известны также однослойные цепные обмотки с укороченным шагом катушек и уменьшенным расходом провода, в которых в разные стороны отгибаются лобовые части каждой пары соседних катушек [3] При четных значениях q≥4 они характеризуются пониженным дифференциальным рассеянием, а при нечетных значениях q≥5 оно возрастает, что является их недостатком.
В изобретении ставится задача уменьшения расхода обмоточного провода и понижения дифференциального рассеяния трехфазной однослойной обмотки с целым нечетным числом q≥5. Эта задача решается тем, что для трехфазной однослойной электромашинной обмотки, 2р-полюсной с целым числом пазов на полюс и фазу q, выполненной из концентрических катушек и содержащей Г=6p катушечных подгрупп с равномерно смещенными осями с номерами 1Г + 3Г(с), (3Г + 3Г(с), 5Г + 3Г(с) соответственно в фазах первой, второй, третьей, соединенных в фазах последовательно при встречном включении четных подгрупп относительно нечетных: при нечетных значениях q≥5 нечетные подгруппы содержат по (q/2 + 0,5) катушек с шагами по пазам yпi=3q 2(i -1), а четные подгруппы содержат по (q/2 -0,5) катушек с шагами по пазам yпк, причем внутренняя катушка всех подгрупп имеет шаг по пазам yп.в= 2q 1, где p 1, 2, 3, c 0, 1, 2, (2q 1); i 1, 2, (q/2 0,5) и к 1, 2, (q/2 -1,5).
На фиг. 1 изображена развернутая схема предлагаемой обмотки при числах q 5, p 1 и z 30 пазах; на фиг. 2 чередование по пазам (1.30) фазных зон обмотки фиг. 1; на фиг. 3 многоугольник МДС обмотки фиг. 1, построенный по вспомогательной треугольной сетке.
Обмотка (фиг. 1) выполнена m 3-фазной однослойной, концентрической с полюсностью p 1 в z 6pq 30 пазах при числе пазов на полюс и фазу q 5 и содержит Г 6p 6 катушечных подгрупп (с номерами от 1Г до 6Г), соединенных в фазах последовательно при встречном включении четных подгрупп относительно нечетных. Фазы A-X, B-Y, C-Z могут соединяться звездой или треугольником и содержат подгруппы с номерами соответственно 1Г + 3Г(с) 1Г и 4Г; 3Г + 3Г(с) 3Г и 6Г; 5Г + 3Г(с) 5Г и 2Г, где с 0 и 1. Нечетные подгруппы содержат по (q/2 + 0,5) 3 катушки с шагами по пазам yпi 15, 13, 9, а четные подгруппы по (q,2 0,5) 2 катушки с шагами yпк 13, 9. Средний шаг по пазам катушек, характеризующий расход обмоточного провода, равен yп.ср= (∑yп)/q[15+2(13+9)]/5=11,8, а обмоточный коэффициент определяется по коэффициентам укорочения Kу катушек подгрупп и равен
Из фиг. 2 видно, что фазные зоны обмотки фиг. 1 (обозначенные в соответствии с обозначениями начал и концов фаз) получаются несплошными и симметричными относительно их осей. На фиг. 3 в соответствии с фиг. 2 построен многоугольник МДС при стороне треугольной сетки, принятой за единицу длины; токи фазных зон изображены единичными векторами в центре многоугольника. По фиг. 3 определяется квадрат среднего радиуса R
Сравним электромагнитные параметры предлагаемой (фиг. 1) обмотки с известной однослойной (q 5; p 1; z 30; τп z/2p 15. Для обмотки шаблонной равнокатушечной (yп 15), концентрической (yп 19, 17, 15, 13, 11 при yп.ср.= 15), концентрической вразвалку (yп 15, 13, 11 для нечетных и yп 13, 11 для четных подгрупп при yп.ср.=12,6) и цепной при yп= τп= 15 фазные зоны будут сплошными, т.е. q 5 катушечных сторон фазы занимают q 5 соседних пазов, при этом обмоточный коэффициент равен Kоб 0,9567 и многоугольник МДС будет представлять собой симметричный шестиугольник, по которому R
Параметры предлагаемой обмотки при q 5 в сравнении с известными однослойными цепными приведены в таблице.
Таким образом, предлагаемая однослойная обмотка по сравнению с известными всех видов имеет при q 5 меньший расход обмоточного провода из-за меньшего среднего шага катушек yп.ср 11,8, а также пониженное дифференциальное рассеяние σд%= 0,617, что показывает целесообразность и эффективность ее применения на статоре трехфазных асинхронных и синхронных машин; она использована на статоре двухскоростных лифтовых АД при 2p 4 и z 60. Ее применение позволяет упрощать изготовление машины, уменьшать расход обмоточного провода, снижать добавочные потери и магнитные шумы, повышать КПД. Т
название | год | авторы | номер документа |
---|---|---|---|
ДРОБНАЯ ТРЕХФАЗНАЯ ОБМОТКА ЯКОРЯ | 1992 |
|
RU2085007C1 |
ТРЕХФАЗНАЯ ДРОБНАЯ (Q=2,25) ОБМОТКА ЯКОРЯ | 1992 |
|
RU2085006C1 |
ТРЕХФАЗНАЯ ДРОБНАЯ (Q=1,125) ОБМОТКА | 1992 |
|
RU2085008C1 |
ТРЕХФАЗНАЯ ДРОБНАЯ (Q = 3,125) ОБМОТКА | 1992 |
|
RU2079946C1 |
ТРЕХФАЗНАЯ ДРОБНАЯ (Q=2,125) ОБМОТКА | 1992 |
|
RU2085005C1 |
ТРЕХФАЗНАЯ ДРОБНАЯ ЯКОРНАЯ ОБМОТКА | 1992 |
|
RU2041543C1 |
ДРОБНАЯ ТРЕХФАЗНАЯ ОБМОТКА | 1992 |
|
RU2072607C1 |
ДРОБНАЯ ТРЕХФАЗНАЯ ОБМОТКА ЯКОРЯ | 1992 |
|
RU2043688C1 |
ТРЕХФАЗНАЯ ДРОБНАЯ ОБМОТКА | 1992 |
|
RU2046501C1 |
ТРЕХФАЗНАЯ ЭЛЕКТРОМАШИННАЯ ДРОБНАЯ (Q = 1,4) ОБМОТКА | 1994 |
|
RU2079948C1 |
Использование: в трехфазных электрических машинах переменного тока. Сущность изобретения: концентрическая обмотка с нечетным числом пазов на полюс и фазу q≥5, нечетные подгруппы содержат по (q/2+0,5) катушек с шагами по пазам Yпi=2q-2(i-1), а четные - по (q/2-0,5) с шагами Yпk=3q-2к, где i и к равны 1, 2, 3,... Технический результат: уменьшение дифференциального рассеяния и расхода меди. 3 ил., 1 табл.
Трехфазная однослойная электромашинная обмотка, 2р-полюсная с целым числом пазов на полюс и фазу q, выполненная из концентрических катушек и содержащая Г=6р катушечных подгрупп с равномерно смещенными осями с номерами 1Г+3Г(с), 3Г+3Г(с), 5Г+3Г(с) соответственно в фазах первой, второй, третьей, соединенных в фазах последовательно при встречном включении четных подгрупп относительно нечетных, отличающаяся тем, что при нечетных значениях q≥5 нечетные подгруппы содержат по (q/2 + 0,5) катушек с шагами по пазам уп i=3q 2(i 1), а четные подгруппы содержат по (q/2 0,5) катушек с шагами по пазам уп k=3q 2k, причем внутренняя катушка всех подгрупп имеет шаг по пазам уп в=2q 1, где р=1,2,3, с=0,1,2, (2р 1), i=1,2, (q/2 0,5) и k=1,2, (q/2 1,5).
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Копылов И.П | |||
и др | |||
Проектирование электрических машин | |||
- М.: Энергия, 1980, с | |||
Термосно-паровая кухня | 1921 |
|
SU72A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Попов В.И | |||
Определение дифференциального рассеяния многофазных совмещенных обмоток | |||
Электричество, 0987, N 6, с | |||
Устройство для выпрямления многофазного тока | 1923 |
|
SU50A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Вольдек А.И | |||
Электрические машины | |||
- М.: Энергия, 1978, с | |||
ПРИСПОСОБЛЕНИЕ ДЛЯ АВТОМАТИЧЕСКОГО ТАРТАНИЯ | 1915 |
|
SU415A1 |
Авторы
Даты
1997-07-20—Публикация
1993-11-18—Подача