Изобретение относится к геологии и может быть использовано для поисков углеводородных залежей в фундаменте под осадочным чехлом плиты, а также для количественной оценки запасов нефти и газа, содержащихся во вторичных коллекторах.
Известен способ прогноза пород-коллекторов в составе кровельной части фундамента, включающий интерпретацию изменений интервала времени между отражениями в базальной части осадочного чехла [1]
Недостатком способа является то, что на его основе некорректно выполнена привязка отражающих границ и выделяемые базальные терригенные коллекторы на самом деле являются вторичными коллекторами (ВК), которые развиты не в подошве осадочного чехла, а в фундаменте. Для подтверждения механизма формирования коллектора и корректной привязки отражающих границ на сейсмовременных разрезах необходимы литолого-петрофизические исследования керна.
Наиболее близким техническим решением, взятым за прототип, является способ прогнозирования зон развития ВК в фундаменте, включающий интерпретацию сейсмических отраженных волн, привязанных к подошве осадочного чехла и нижележащим акустическим границам с учетом данных геолого-геофизических исследований в скважинах [2]
Недостаток способа, принимаемого за прототип, заключается в его низкой достоверности, обусловленной тем, что в качестве ВК рассматриваются лишь коры выветривания, на выявлении свойств которых и сосредоточены геологические и геофизические исследования в скважинах.
Известно, что коры выветривания сложены главным образом глинистыми минералами, полуторными окислами и гидроокислами, имеющими низкие фильтрационно-емкостные свойства и потому не могущие быть коллекторами и содержать углеводородные залежи.
Для подтверждения механизма формирования коллектора так же, как в аналоге, необходимы литолого-петрофизические исследования образцов керна, а также требуется провести привязку отражающих границ внутри фундамента для уточнения нижней границы распространения ВК и фазового состояния флюидов, насыщающих его.
Задача изобретения повышение достоверности способа прогнозирования зон развития ВК.
Задача достигается тем, что в известном способе прогнозирования зон развития ВК в фундаменте, включающем интерпретацию сейсмических отраженных волн, привязанных к подошве осадочного чехла и одной нижележащей акустической границе с учетом данных геолого-геофизических исследований в скважинах, проводят литолого-петрофизические исследования, с помощью которых определяют наиболее вероятный генезис вторичных коллекторов, на основе чего выделяют литотипы, по которым происходит формирование вторичных коллекторов и определяют площадь развития этих литотипов в пределах рассматриваемого месторождения, определяют скорость распространения продольных волн в выделенных литотипах и в развивающихся по ним вторичных коллекторах, выделяют сейсмогоризонт между отражением от подошвы осадочного чехла и отражением в кровельной части фундамента, с учетом полученных литолого-петрофизических и скоростных характеристик проводят количественную интерпретацию изменений интервала времени между отраженными волнами, ограничивающими выделенный сейсмогоризонт, и зоны максимального интервала времени рассматривают как участки наиболее вероятного развития вторичных коллекторов.
На фиг. 1 приведены временной сейсмический разрез, проходящий через скважину и ее литолого-стратиграфический разрез, отвечающий интервалу залегания сейсмогоризонта K между верхней K1 отражающей границей и нижней A отражающей границей, включающего дополнительное отражение A1, где 1 глины, 2 угли, 3 вторичный коллектор (гидротермальные силициты), 4 известковистые сланцы, 5 газ, 6 газо-нефтяная переходная зона, 7 нефть, 8 - расположение на временном разрезе литолого-стратиграфической колонки, изображенной справа от него, 9 разрывные нарушения.
На фиг. 2 показана схема расположения прогнозируемых площадей развития вторичных коллекторов, где 10 прогнозируемые зоны развития ВК, 11 - расположение скважин, 12 площадь распространения потенциально продуктивных литотипов (ППЛ).
Способ реализуют следующим образом.
На выбранной площади проводят сейсморазведочные работы. По данным бурения и результатам геофизических исследований скважин ГИС) производят привязку отражающих границ на временных сейсмических разрезах, идентифицируют подошву осадочного чехла, сложенную преимущественно глинистыми минералами, которые надежно экранируют углеводородные залежи во вторичных коллекторах в фундаменте.
Выделяют сейсмогоризонт K в фундаменте, ограниченный сверху отражением от подошвы осадочного чехла, а снизу отражением в кровельной части фундамента.
Определяют интервал времени между отражающими границами K1 и A, соответствующий сейсмогоризонту K и называемый для краткости его временной мощностью (см. фиг.1).
На временных разрезах выделяют участки, в пределах которых сейсмогоризонт K имеет большую по сравнению с соседними временную мощность, а также интервалы, где внутри этих участков с увеличенной временной мощностью появляется дополнительное отражение A1 (фиг.1).
По результатам промысловых испытаний и данным ГИС устанавливают фазовое состояние углеводородов во вторичных коллекторах, расположенных в горизонте K.
Проводят литолого-минералогические и петрофизические исследования образцов керна, по данным этих исследований реконструируют генезис коллектора в фундаменте. Для этого сопоставляют коллекторские свойства и вещественный состав исходных пород, слагающих фундамент и развивающихся по ним в результате вторичных процессов (измененных) пород.
На основе анализа литолого-коллекторских свойств пород фундамента устанавливают литотипы, за счет которых возникают наиболее емкие ВК, что объясняется особенностями их состава (легкая растворимость и вынос неустойчивых компонентов, а также прочный минеральный каркас, препятствующий уплотнению возникающего ВК). Выделенные литотипы называют потенциально-продуктивными литотипами (ППЛ).
На основании проведенных литолого-коллекторских исследований делают заключение о механизме формирования ВК и типа коллектора.
По данным бурения, литолого-петрофизических исследований и результатам интерпретации данных ГИС устанавливают площадь развития ППЛ в фундаменте, которой на временных разрезах исследуемой территории соответствует сейсмогоризонт K.
Затем проводят определения акустических свойств ППЛ в керосинонасыщенном, а формирующихся по ним ВК в керосино- и газонасыщенном состояниях. Керосинонасыщением имитируется нефтенасыщенность. Определения проводят в условиях, моделирующих пластовые температуры и давления. Устанавливают объемную плотность ППЛ и ВК.
По известной формуле
(см. И. И. Гурвич, Г.И. Боганик. Сейсмическая разведка, М. Недра, 1980, с. 67), Определяют коэффициент отражения Ap на границе между газо- и керосинонасыщенными ВК, где d1 и d2 плотности граничащих пород, а Vp1 и Vp2 скорости распространения в них продольных волн.
Общеизвестно, что при значениях величины Ap от 0,1 и выше формируется устойчивое отражение от границы рассматриваемых объектов. Поэтому если рассчитанные по вышеприведенной формуле величины Ap на границах между газо- и нефтенасыщенными ВК равны или больше 0,1, то считают, что дополнительное отражение A1, присутствующее в сейсмогоризонте K в участках с увеличенной его временной мощностью, отвечает фазовой границе газ жидкость.
Определяют, во сколько раз произошло увеличение временной мощности горизонта K по сравнению с соседними (с неувеличенной толщиной) участками и соотносят величину этого увеличения с изменением скорости распространения продольных волн в исходных ППЛ и развивающихся по ним ВК. Участки с пропорциональным увеличением временной мощности сейсмогоризонта K соответствуют прогнозируемым зонам развития ВК в ППЛ.
Выделенные на временных разрезах участки с увеличенными временными мощностями сейсмогоризонта K наносят на карту. Полученную карту с выделенными участками прогнозируемых ВК используют для выбора мест размещения сначала разведочных, а затем и эксплуатационных скважин.
Используя полученные данные о площади и мощности ВК, а также о характере их насыщения проводят оценку запасов углеводородов, содержащихся в них.
Пример. Эффективность предлагаемого способа проверена путем прогнозирования зон развития вторичных коллекторов в фундаменте (доюрском комплексе) плиты Северо-Варьеганского месторождения, что осуществлялось на основе комплексирования результатов площадей сейсморазведки ОГТ с данными бурения, ГИС, литолого-петрофизических и (дополнительных) акустических исследований образцов керна.
В пределах месторождения провели площадную сейсморазведку ОГТ. По данным бурения и ГИС произвели привязку отражающих границ на временных сейсмических разрезах, идентифицировали подошву осадочного чехла, сложенного преимущественно углисто-глинистыми периодами и являющихся надежным флюидоупором, а также расположенную непосредственно под ней непрерывно отражающую границу, обусловленную сменой литологического состава пород в кровельной части фундамента (контакт между кремнистыми известняками (сверху) и известковистыми сланцами (снизу) [фиг.1, поз.4).
Выделили сейсмогоризонт K в кровельной части фундамента, ограниченный сверху отражением K1, возникающим на границе между подошвой осадочного чехла, представленного углисто-глинистыми отложениями нижней юры и кровлей фундамента, а снизу ближайшим непрерывным отражением A в кровельной части фундамента, возникающим на границе кремнистых известняков и глинистых сланцев нижнекарбонового возраста (фиг.1).
На временных разрезах выделили участки, в пределах которых сейсмогоризонт K имеет увеличенную по сравнению с соседними участками временную мощность, а также интервалы, где внутри этих участков с увеличенной временной мощностью появляется дополнительное отражение A1 (фиг.1).
Отобрали образцы керна из разведочных скважин, затем провели их литолого-петрофизические исследования.
Используя полученные данные литолого-петрофизических исследований образцов керна реконструировали механизм формирования коллектора в фундаменте. Для этого сопоставили коллекторские свойства и вещественный состав исходных пород, слагающих кровельную часть фундамента и развивающихся по ним в результате вторичных процессов (измененных) пород.
На основе анализа литолого-коллекторских свойств пород, слагающих кровельную часть фундамента Северо-Варьеганского месторождения установили, что наиболее высокоемкие ВК возникают по кремнистым известнякам, что объясняется особенностями их состава (легкая растворимость и вынос карбонатного материала, а также прочный кремнистый каркас, препятствующий уплотнению возникающего ВК). Этот литотип отнесли к ППЛ.
Определили, что силициты, возникающие по исходным кремнистым известнякам и получившим свое название из-за высокого содержания в их составе кремнезема (до 95% ), имеют пористость до 34% и проницаемость до 295 фм2. По наличию в их составе таких интервалов, как серицит, диккит и сферосидерит, которых нет в исходном кремнистом известняке, а также по отсутствию таких минералов как кальцит, доломит, полевые шпаты, пирит и органического вещества, которые являются обязательными компонентами исходных кремнистых известняков, установили гидротермальный механизм их формирования под действием среднетемпературных, кислых флюидов. О чем также свидетельствует перекристаллизация исходного скрытокристаллического биогенного кремнезема, содержащегося в кремнистых известняках, в мелкокристаллический хорошо ограненный кварц, слагающий основную массу гидротермальных силикатов (до 95%).
На основе проведенных исследований установили, что пустотность в гидротермальных силицитах относится к трещино-порово-кавернозному типу и возникла главным образом за счет растворения и выноса карбонатов (кальцита и доломита). Гидротермальные силициты отнесли к ВК.
Определили, что в других литотипах, например, глинистых сланцах, входящих в состав кровельной части доюрского комплекса, несмотря на гидротермальное воздействие не происходит образование вторичного коллектора, что объясняется низким содержанием в них растворенных компонентов (карбонатов), а также их высокой пластичностью, препятствующей сохранению возникающей вторичной пористости.
Поэтому по данным бурения, литолого-петрофизических исследований керна и результатам интерпретации ГИС установили площадь распространения кремнистых известняков в составе кровельной части доюрского комплекса Северо-Варьеганского месторождения (фиг.2, поз.12).
На примере скважины 2П по данным испытаний и ГИС установили фазовое состояние углеводородов во вторичном коллекторе. Верхняя часть залежи заполнена газом, в средней переходная газо-нефтяная зона и нижняя часть - нефтенасыщенная (фиг.1, поз.5, 6 и 7).
Отобрали образцы керна из фундамента, представленные гидротермальными силицитами и кремнистыми известняками. Из образцов выпилили цилиндры диаметром 40 мм и высотой 16 мм. По стандартной методике определили коллекторские свойства цилиндрических образцов и их объемную плотность. На акустической установке ПИВК-1 на тех же образцах измерили скорость прохождения в них продольных волн Vp в условиях, моделирующих пластовые.
При определении скоростных характеристик образцов гидротермально измененных пород-коллекторов их насыщали как керосином (моделирование нефтенасыщенности), так и воздухом (моделирование газонасыщенности).
Результаты определений скоростных характеристик различных литотипов пород фундамента как в керосинонасыщенном, так и в газонасыщенном состояниях, а также значения их плотностей и вычисленные на их основе коэффициенты отражения приведены в таблице.
Определили, что скорость распространения Vp в гидротермальных силицитах в керосинонасыщенном состоянии меньше, чем в неизменных кремнистых известняках в 1,1-1,7 раз, а в газонасыщенном состоянии в 1,4 2,2 раз. По этому критерию приняли, что участки на временных разрезах, где временная мощность горизонта K увеличивается более чем в 1,25 раза по сравнению с соседними интервалами, представлены измененными породами-коллекторами (гидротермальными силицитами), (фиг.2 и табл.). В среднем временная мощность в интервалах развития гидротермальных силицитов по сравнению с толщиной исходных кремнистых известняков по данным акустических исследований увеличивается в 1,7 раз.
Общепринято, что при значениях Ap равном 0,1 и более формируется отражение, фиксируемое на временном разрезе. Из таблицы следует, что Ap на границе смены фазового состояния пластового флюида (газ-жидкость) в гидротермальных силицитах в кровельной части доюрского комплекса равен 0,2 (табл.). Это значение выше принятой критической величины, равной 0,1, поэтому на границе фаз формируется отражение A1 внутри участков с увеличенной временной мощностью сейсмогоризонта K (фиг.1).
Используя данные промысловых испытаний и ГИС на примере скв. 2П проверили соответствие дополнительного отражения A1 в участке с увеличенной временной мощностью сейсмогоризонта K фазовой границе газ жидкость (фиг.2).
По определенным критериям, а именно: на площади развития в кровле фундамента кремнистых известняков, перекрытых надежным глинистоуглистым флюидоупором по увеличению временной мощности сейсмогоризонта K более чем в 1,25 (в среднем в 1,7) раза по сравнению с его минимальными значениями, выделили прогнозируемые зоны развития вторичных коллекторов в кровле доюрского комплекса, по дополнительному отражению A1 в участках с увеличенной временной мощностью сейсмогоризонта K установили двухфазное состояние порового флюида. Полученные зоны предполагаемого распространения вторичных коллекторов гидротермального происхождения нанесли на карту (фиг.2).
Используя полученные данные оценили запасы углеводородов, содержащихся в гидротермальных силицитах.
Достоверность способа проверили на имевшихся в наличии временных разрезах и результатах литолого-петрофизических исследований керна и промысловых испытаний по 12 скважинам, пробуренным в пределах выбранного участка Северо-Варьеганского месторождения. В 11 скважинах из 12 прогноз подтвердился, что соответствует почти 92% удачности прогноза.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЛОКАЛИЗАЦИИ ЗАПАСОВ В НЕФТЕМАТЕРИНСКИХ ТОЛЩАХ | 2014 |
|
RU2572525C1 |
Способ локализации запасов трещинных кремнистых коллекторов | 2023 |
|
RU2814152C1 |
Способ проводки горизонтального ствола скважины в целевом интервале осадочных пород на основании элементного анализа шлама | 2019 |
|
RU2728000C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ЗОН РАЗВИТИЯ ВТОРИЧНЫХ КОЛЛЕКТОРОВ ТРЕЩИННОГО ТИПА В ОСАДОЧНОМ ЧЕХЛЕ | 2012 |
|
RU2520067C2 |
СПОСОБ ПОИСКА ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ В НЕТРАДИЦИОННЫХ КОЛЛЕКТОРАХ БАЖЕНОВСКОЙ СВИТЫ | 2015 |
|
RU2596181C1 |
СПОСОБ ЛОКАЛИЗАЦИИ ЗАПАСОВ УГЛЕВОДОРОДОВ В КРЕМНИСТЫХ ОТЛОЖЕНИЯХ ВЕРХНЕГО МЕЛА | 2020 |
|
RU2742077C1 |
СПОСОБ ИССЛЕДОВАНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ГАЗОНЕФТЯНЫХ ЗАЛЕЖЕЙ | 1999 |
|
RU2143064C1 |
СПОСОБ ПОИСКА ЗАЛЕЖЕЙ УГЛЕВОДОРОДОВ | 2005 |
|
RU2276390C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННЫХ ПЛАСТОВ | 2012 |
|
RU2487239C1 |
Способ определения структурно-тектонического строения погребенного складчатого фундамента с использованием данных сейсморазведки | 2022 |
|
RU2797487C1 |
Использование: для поисков углеводородных залежей в фундаменте под осадочным чехлом плиты, а также для количественной оценки запасов нефти и газа во вторичных коллекторах. Сущность изобретения: проводят геолого-геофизические исследования в скважинах, по результатам литолого-петрофизических исследований определяют наиболее вероятный генезис вторичных коллекторов, на основе которого выделяют литотипы, определяют скорость распространения продольных волн в выделенных литотипах и в развивающихся по ним вторичных коллекторах, выделяют сейсмогоризонт между отражением от подошвы осадочного чехла и отражением в кровельной части фундамента, определяют интервал времени между отраженными волнами, ограничивающими выделенный сейсмогоризонт, зоны максимального интервала времени рассматривают как участки наиболее вероятного развития вторичных коллекторов. 2 ил., 1 табл.
Способ прогнозирования зон развития вторичных коллекторов в фундаменте, включающий интерпретацию сейсмических отраженных волн, привязанных к подошве осадочного чехла и одной нижележащей акустической границе с учетом данных геолого-геофизических исследований в скважинах, отличающийся тем, что проводят литолого-петрофизические исследования, с помощью которых определяют наиболее вероятный генезис вторичных коллекторов, на основе чего выделяют литотипы, по которым происходит формирование вторичных коллекторов, и определяют площадь развития этих литотипов в пределах рассматриваемого месторождения, определяют скорость распространения продольных волн в выделенных литотипах и в развивающихся по ним вторичных коллекторах, выделяют сейсмогоризонт между отражением от подошвы осадочного чехла и отражением в кровельной части фундамента, с учетом полученных литолого-петрофизических и скоростных характеристик проводят количественную интерпретацию изменений интервала времени между отраженными волнами, ограничивающими выделенный сейсмогоризонт, и зоны максимального интервала времени рассматривают как участки наиболее вероятного развития вторичных коллекторов.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кирсанов В.В | |||
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
на Северо-Варьеганской площади в Нижневартовском районе Хантымансийского автономного округа Тюменской области.- ТНГФ, Тюмень, 1988, с.86 и 87, 101 - 106 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Шутько С.Ю., Кирьянова Н.И | |||
Новые данные о приконтактной зоне платформенного чехла и палеозойских образований Северо-Варьеганского и Варьеганского месторождений | |||
Геология нефти и газа | |||
Механизм для сообщения поршню рабочего цилиндра возвратно-поступательного движения | 1918 |
|
SU1989A1 |
Авторы
Даты
1997-07-27—Публикация
1994-07-12—Подача