Изобретение относится к медицине, а именно к рентгенологии.
Известно множество способов денситометрии рентгенограмм при костной патологии (Муругов В.М. 1965; 1970; Володина Г.И. Кугельмас М.К. 1972; Розенштраух Л.С. Рассохин Б.М. 1976).
Однако все перечисленные способы денситометрического определения относительного содержания минеральных солей в костях лишь констатируют саму возможность такого определения относительных показателей, декларируют ценность способа, но, как правило, не содержат данных, которые показывали бы конкретные преимущества денситометрического способа в клинической рентгенодиагностике. Все вышеперечисленные способы денситометрии рентгенограмм обладают недостаточно высокой точностью, поскольку в них используют рассеянные источники света. Основа рентгеновской пленки и фотоэмульсионный слой обладают различным коэффициентом отражения и пропускания в различных областях оптического спектра. При использовании обычного источника света это приводит к определенной погрешности измерения плотности рентгенограмм. Недостатком их является также использование рентгеновской пленки ограниченных габаритов; при проведении исследования исследуемый участок кости и клин-эталон находятся в неодинаковых условиях, поскольку кость окружена мягкими тканями, которые искажают определение концентрации минеральных солей. Кроме того, структура вещества клина-эталона не идентична структуре кости, что также вносит определенную погрешность в исследование, тем более для патологически измененной костной ткани трудно подобрать эталон, вмещающий весь диапазон плотности его. Этими же недостатками обладает и прототип, где использован стандартный диаметр МФ-4 с обычным источником света.
Цель изобретения повышение точности измерения.
Способ осуществляется следующим образом.
Принцип определения плотности объекта (рентгенограммы костной ткани) заключается в том, что свет гелий-неонового лазера , проходя через фотометрический участок, попадает на фотоэлемент (ФД-7К), возбуждая в нем фототок. Последний поступает в гальванометр. Величина фототока определяется плотностью фотометрируемого участка объекта (рентгенограммы). С изменением плотности объекта изменяется отсчет по шкале гальванометра. В качестве источника лазерного излучения используется любой гелий-неоновый лазер. В зависимости от плотности рентгенограммы должна быть подобрана та мощность, которая обеспечивает фотометрирование в линейном участке регистрирующего фотоприемника фотометра. При нормально экспонированной и правильно проявленной пленке диапазон мощности светового источника для осуществления денситометрии находится в пределах 15-20 мВт.
Рентгенограмма фиксируется на пластинку так, чтобы фотометрируемый участок строго соответствовал проекции измерительной щели, на которую падает световой поток. Фотометрируемая площадь выбирается в зависимости от поставленной задачи и может быть в пределах от 1 до 25 мм2. Полученные результаты подсчитываются в относительных единицах или процентах. Предварительно измеряется плотность здорового участка костной ткани, которая принимается за единицу или 100% Затем измеряется плотность исследуемого участка. Путем простого математического расчета определяется плотность последнего относительно исходной единицы измерения.
Расчет производится следующим образом:
а) измерение в единицах. Если здоровая костная ткань соответствует 25 единицам (ед), а патологически измененная 19 ед, то по соотношению 25 ед. принимается за 1 единицу, а 19 ед. за X. Отсюда X=19:25=0,8 ед плотности патологически измененной костной ткани от исходной здоровой, принимаемой условно за одну единицу;
б) измерение в процентах. 25 ед плотности здоровой костной ткани принимается за 100% а 19 ед патологически измененной костной ткани за X% Отсюда из отношения следует, что X=1900:25=76% плотности патологически измененной костной ткани от исходной здоровой.
Пример. Больной З-ов И.А. 40 лет (ист. бол. N 997/61023). Компрессионный перелом ДХП. Данные денситометрии в момент травмы: на уровне линии перелома 1,65 ед, в центральном отделе поврежденного позвонка 1,75 ед, выше линии перелома 0,8 ед и ниже линии перелома 1,05 ед.
Исследование в динамике: через 6 месяцев на уровне линии перелома 2,0 ед, в центральной части поврежденного позвонка 2,0 ед, выше линии перелома - 0,5 ед, ниже линии перелома 2,13 ед.
Это наблюдение позволяет высказаться в пользу выраженного репаративного процесса на уровне поврежденного ХП грудного позвонка при динамическом наблюдении (плотность поврежденного позвонка составляет 2,0 ЕД).
Использование в качестве светового источника гелий-неонового лазера, обладающего свойствами монохроматичности, малой расходимости светового потока излучения, позволяет получить более точные данные денситометрии. Во-первых, использование лазерного источника упрощает (соответственно удешевляет) оптическую схему фотометра и позволяет проводить исследования с точностью до нескольких микрон. Во-вторых, в промышленных фотометрах фотометрирование производится в определенной области спектра (что достигается введением светофильтров), достичь при этом большой спектральной плотности излучения от обычных участков рентгенограммы. Указанный недостаток легко преодолевается при использовании лазерного источника света.
Использование: в области медицины, в частности в рентгенологии, и может применяться для рентгеноденситометрии костей. Сущность изобретения: пропускают пучок света через исследуемый участок рентгенограммы, измеряют и рассчитывают его плотность, при этом в качестве пучка света используют монохроматический луч гелий-неонового лазера с мощностью 15-20 мВт и длиной волны 0,6328 . Способ позволяет повысить точность способа.
Способ рентгеноденситометрии костей путем пропускания пучка света через исследуемый участок рентгенограммы с последующим измерением и расчетом его плотности, отличающийся тем, что, с целью повышения точности измерения, в качестве пучка света используют монохроматический луч гелий-неонового лазера с мощностью 15 20 мВт и длиной волны
Казанский медицинский журнал, 1970, N 6, с | |||
Устройство для сортировки каменного угля | 1921 |
|
SU61A1 |
Авторы
Даты
1997-09-20—Публикация
1991-02-01—Подача