СПОСОБ РЕГИСТРАЦИИ НЕОДНОРОДНОСТЕЙ АСТРОФИЗИЧЕСКИХ ОБЪЕКТОВ Российский патент 1997 года по МПК G01J3/06 

Описание патента на изобретение RU2091731C1

Изобретение относится к астрофизике и может быть использовано для изучения неоднородности плотности плазмы в эмиссионных солнечных образованиях (вспышки, протуберанцы, хромосфера), а также при исследованиях других астрофизических объектов (сейфертовские галактики, квазеры, вспышки звезд).

Известен способ, при котором получают фильтрограммы Солнца в линиях Hα, Kca II и некоторых других и который дает возможность регистрировать преимущественно неравномерности распределения температуры по поверхности. В этих линиях контрастнее всего выделяются активные образования в атмосфере Солнца, т. е. те образования, которые отличаются от окружающей их атмосферы в первую очередь повышенной температурой. Это, например, вспышки, флокулы и др. Излучение от этих образований обусловлено в первую очередь электронными ударами первого рода, эффективность которых растет с повышением температуры. Безусловно, и другие элементарные процессы (возбуждение уровней полем радиации, спонтанные переходы и т. п. ) также играют роль при возбуждении верхних уровней водорода, но они не являются определяющими. В то же время интенсивность излучения этих образований зависит и от плотности плазмы. Недостаток способа состоит в том, что он не позволяет выделить те места в солнечной атмосфере, которые отличаются повышенной плотностью плазмы.

Известен способ, при котором получают фильтрограммы Солнца в свете линии водорода H9 с помощью широкополосного интерференционного фильтра.

Недостаток способа заключается в том, что он предназначен для изучения голубого континуума и этим способом регистрируется суммарное излучение возбужденного водорода (в линии H9) и участка непрерывного спектра (голубого континуума), который, как сейчас известно, может характеризовать неоднородность плотности плазмы. В этом участке непрерывного спектра регистрируется излучение только объемов с высоким значением спектронной концентрации (ne≥1015 см-3). Эмиссия областей с меньшими ne (ne≅1015 1014 см-3) не регистрируется. В то же время, в этой области спектра, т.е. в бальмеровском континууме, эмиссия есть интегральной от объемов со всеми ne.

Задача, на решение которой направлено заявляемое изобретение, заключается в том, чтобы определить в атмосфере Солнца и других астрофизических объектах области с повышенной (пониженной) мерой эмиссии, которая определяется объемами со всеми электронными концентрациями. Технический эффект достигается тем, что в способе регистрации неоднородностей астрофизических объектов, включающем получение их изображений с помощью телескопа путем регистрации излучения, отличающемся тем, что излучение регистрируют за пределом границы водородного континуума, регистрируя при этом повышенную интенсивность по самому сильному отклику приемника изображения, сравнивают ее с интенсивностями соседних участков или же с интенсивностями излучения в разные моменты времени в случае наблюдения нестационарных объектов, и на основании подобных сравнений делают вывод о наличии неоднородностей электронной плотности, при этом излучение регистрируют в длине волны
λo= λеn- Δλ1/2,
где теоретическая граница водородной серии;
n номер серии;
полуширина полосы пропускания фильтра.

Наземные наблюдения предлагается проводить с использованием интерференционного светофильтра, рассчитанного на участок спектра за границей серии Бальмера . Такие наблюдения эмиссионных образований будут давать представление о неоднородности электронной концентрации, поскольку избыточная эмиссия в этой области спектра возникает за счет фоторекомбинаций на второй квантовый уровень водорода, а его интенсивность Jc,2 пропорциональна мере эмиссий n2e

lT-3/2e
(здесь электронные концентрации ne и температура Te равняются протонным концентрациям и температуре, l протяженность области вдоль луча зрения).

Из этого видно, что неоднородность излучения за пределом водородной серии обеспечивает возможность получения представлений о неоднородности электронной концентрации.

Действительно, в оптических солнечных вспышках, к примеру, электронная концентрация оказывается повышена по сравнению с окружающей атмосферой примерно на три порядка (от 1010 до 5•1013 см-3), а температура не более, чем в три раза (от 7•103 до 2•104 K). Если учесть, что Jc,2 пропорционально n2e

, то понятно, что непостоянство регистрируемой величины Je,2 обусловлено в первую очередь изменением ne.

Таким образом, при получении изображения в континууме водородной серии достигается возможность регистрации неоднородности электронной концентрации в астрофизических объектах.

В результате приведенного анализа видно, что по сравнению с прототипом предлагаемый способ дает возможность регистрировать как макронеоднородности плотности плазмы по поверхности астрофизических тел, так и их изменение и со временем. В случае наблюдений Солнца возникает возможность определять динамику, морфологию и статистику областей с повышенной интенсивностью Jc,2, их связь с такими активными образованиями на Солнце, как вспышки, флоккулы и т. д. а также взаимосвязь в этих образованиях параметров ne и l. Особый интерес может иметь излучение динамики ne в солнечных вспышках. Известно, что во вспышках электронная концентрация выше, чем в окружающей хромосфере, на 2-3 порядка, но динамика роста ne во вспышках пока что не известна. Наблюдения, которые будут проводиться на базе заявляемого способа, помогут решить эту и другие проблемы солнечных образований и динамических процессов, которые проходят в атмосфере Солнца.

В качестве примера, который иллюстрирует возможность получения искомого результата и показывает эффективность заявляемого способа, приведем сравнение интенсивности возле границы бальмеровского континуума двух различных областей атмосферы Солнца вспышки балла 2 (Jc,2(f) и хромосферы (Jc,2(ch)) и покажем, что основным параметром, который влияет на рост Jc,2, является электронная концентрация. Необходимые для сравнения параметры вспышки и хромосферы приводятся в таблице.

Из выражения Ic,2~ n2e

lT-3/2e
видно, что увеличение температуры в объеме вспышки, по сравнению с хромосферой, уменьшает интенсивность Jc,2 в 1,6 раза, а вот рост значения ne в области вспышки дает основной вклад в рост Jc,2 (отношение n2e
(f)/n2e
(ch) = 104). А это означает, что, регистрируя рост интенсивности Jc,2, мы тем самым определяем места в солнечной атмосфере с повышенным значением ne.

Похожие патенты RU2091731C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В ВОДОРОДНОЙ ПЛАЗМЕ 1987
  • Курочка Л.Н.
RU2019069C1
СПОСОБ РЕГИСТРАЦИИ ВСПЫШЕК НА СОЛНЦЕ И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2019
  • Тертышников Александр Васильевич
  • Шрамко Андрей Дмитриевич
  • Писанко Юрий Владимирович
  • Тлатов Андрей Георгиевич
  • Палей Алексей Алексеевич
  • Тертышников Артем Михайлович
  • Грязнов Константин Васильевич
RU2715837C1
Спектрохронограф 1991
  • Курочка Лев Николаевич
SU1831664A3
СПОСОБ ПРОИЗВОДСТВА ОЗОНА ПРЕИМУЩЕСТВЕННО ДЛЯ ВОССТАНОВЛЕНИЯ ОЗОНОВОГО СЛОЯ ЗЕМЛИ 1992
  • Старик А.М.
  • Хабаров О.С.
  • Королев А.Г.
  • Сизенцев Г.А.
  • Бакушин О.С.
RU2041161C1
СПОСОБ ИЗМЕРЕНИЯ ВРЕМЕННЫХ ВАРИАЦИЙ ПОТЕМНЕНИЯ К ЛИМБУ СОЛНЦА 1997
  • Кобанов Н.И.
  • Григорьев В.М.
RU2124186C1
СПОСОБ КРАТКОСРОЧНОГО ПРОГНОЗА ВРЕМЕНИ РЕГИСТРАЦИИ ЯВЛЕНИЯ КОРОНАЛЬНОГО ВЫБРОСА МАССЫ (КВМ) 2016
  • Фридман Владимир Матвеевич
  • Шейнер Ольга Александровна
RU2630535C2
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ШАРООБРАЗНОМ КОСМИЧЕСКОМ ОБЪЕКТЕ 2022
  • Филиппов Дмитрий Валерьевич
  • Климов Андрей Николаевич
  • Копалкин Александр Валентинович
  • Ткачёв Максим Валентинович
  • Опенов Сергей Леонидович
  • Корнилов Андрей Игоревич
RU2789346C1
СОЛНЕЧНЫЙ ОПТИЧЕСКИЙ ТЕЛЕСКОП КОСМИЧЕСКОГО БАЗИРОВАНИЯ (ВАРИАНТЫ) 2015
  • Руденчик Евгений Антонович
  • Кожеватов Илья Емельянович
  • Куликова Елена Хусаиновна
  • Сперанский Сергей Борисович
  • Беляков Виктор Юрьевич
RU2607049C9
СПОСОБ И СИСТЕМА ДАЛЬНЕЙ РАДИОЭЛЕКТРОННОЙ РАЗВЕДКИ ПО ПРИЗНАКАМ "СЛЕДА В АТМОСФЕРЕ" ЛЕТЯЩЕГО В СТРАТОСФЕРЕ С ГИПЕРЗВУКОВОЙ СКОРОСТЬЮ "РАДИОНЕЗАМЕТНОГО" ОБЪЕКТА 2017
  • Егоров Олег Валерьевич
  • Смирнов Дмитрий Владимирович
RU2689783C2
Способ определения концентрации примеси в кремнии 1990
  • Дехтяр Юрий Давидович
  • Сагалович Геннадий Львович
  • Савваитова Юлия Александровна
  • Казакова Елена Анатольевна
  • Виноградов Андрей Яковлевич
SU1749953A1

Иллюстрации к изобретению RU 2 091 731 C1

Реферат патента 1997 года СПОСОБ РЕГИСТРАЦИИ НЕОДНОРОДНОСТЕЙ АСТРОФИЗИЧЕСКИХ ОБЪЕКТОВ

Использование: изобретение относится к астрофизике и может быть использовано для изучения неоднородности плотности плазмы в эмиссионных солнечных астрофизических образованиях. Сущность изобретения: излучение регистрируют за пределом границы водородного континуума, регистрируя при этом изменение интенсивности по сравнению с интенсивностью соседних участков объектов или интенсивностью излучения в разные моменты времени, и на основании сравнений делают вывод об изменениях электронной концентрации. 1 табл.

Формула изобретения RU 2 091 731 C1

Способ регистрации неоднородностей астрофизических объектов, включающий получение их изображений с помощью телескопа путем регистрации излучения объектов с использованием оптического фильтра и приемника изображения, отличающийся тем, что излучение регистрируют за пределом границы водородного континуума, регистрируя при этом интенсивность самого сильного отклика приемника изображения, сравнивают ее с интенсивностями соседних участков изображения или с интенсивностями излучения в разные моменты времени и на основании подобных сравнений делают вывод о наличии неоднородностей электронной плотности объектов, при этом излучение регистрируют на длине волны
λ0= λc,n-Δλ1/2,
где λc,n - теоретическая граница водородной серии;
n номер серии;
Δλ1/2 - полуширина полосы пропускания фильтра.

Документы, цитированные в отчете о поиске Патент 1997 года RU2091731C1

Северный А.Б., Мустель Э.Р
Известия
КрАО, 1954, 13, 82
Zirin H., Solar Phys., 1983, 86, N 1/2, 173.

RU 2 091 731 C1

Авторы

Курочка Лев Николаевич[Ua]

Крячко Иван Павлович[Ua]

Даты

1997-09-27Публикация

1992-05-26Подача