СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНЫХ ПО ПРОНИЦАЕМОСТИ НЕФТЯНЫХ ПЛАСТОВ Российский патент 1997 года по МПК E21B43/22 

Описание патента на изобретение RU2095555C1

Изобретение относится к нефтедобывающей промышленности, в частности, к способам разработки нефтяных месторождений с применением физико-химических методов повышения нефтеотдачи пластов.

Известен способ разработки нефтяных месторождений, заключающийся в закачке в пласт аэрированного раствора поверхностно-активных веществ, снижающего проницаемость высокопроницаемых пропластков при заводнении слоисто-неоднородных пластов (см. патент США N 3547199). Недостатком способа является низкая эффективность его из-за нестабильности закачиваемого в пласт агента.

Прототипом изобретения является способ разработки нефтяных месторождений, заключающийся в том, что в продуктивный пласт закачивают оторочку вязкого раствора полимера с последующей закачкой воды (см. а.с.СССР N 681993, кл. E 21 B 43/20). Сущность способа заключается в том, что полимерный раствор, проникая в первую очередь в высокопроницаемые пропластины, увеличивает их фильтрационное сопротивление, за счет чего нагнетаемая вслед за оторочкой вода направляется в менее проницаемые интервалы, что обуславливает как увеличение охвата пласта вытеснением так и повышение нефтеотдачи.

Способ недостаточно эффективен из-за неполного охвата пласта заводнением. В низкопроницаемые интервалы пласта полимер не может проникнуть ввиду того, что характерный диаметр микроканалов этих интервалов меньше, чем размер макромолекул полимера. Поэтому, когда через единый фильтр заканчивается оторочка полимера в пласт, сложенный разнопроницаемыми пропластками, та часть коллекторов, пористая среда которых имеет средний размер пор меньший, чем размер макромолекулярного клубка, может быть заблокирована (как бы "заклеена") закачиваемым полимером, в результате чего уменьшается охват пласта при последующем заводнении.

Техническим результатом от использования изобретения является повышение эффективности вытеснения нефти растворами полимеров.

Указанный технический результат достигается за счет того, что в предлагаемом способе разработки неоднородных по проницаемости нефтяных пластов, включающем вытеснение нефти из пласта последовательными оторочками растворов полимеров и воды, растворы полимеров в каждый пропласток закачивают одновременно-раздельно, причем в высокопроницаемые пропластки закачивают растворы полимеров с высокой молекулярной массой, в низкопроницаемые с низкой молекулярной массой, а полимер подбирают из условия, чтобы средний размер макромолекул не превышал средний диаметр поровых каналов.

Такое выполнение способа обеспечивает наиболее оптимальный режим вытеснения нефти за счет свободного проникновения полимерных растворов и воды в нефтенасыщенное поровое пространство. При этом удается избежать блокировки проводящих поровых каналов низкопроницаемых участков продуктивной толщи, что позволяет увеличить охват пласта вытеснением и, в конечном счете, повысить его конечную нефтеотдачу по сравнению с известным способом.

На сегодня нам не известны способы, предусматривающие одновременно-раздельную закачку полимеров разной молекулярной массы в разнопроницаемые интервалы пласта с целью избежания закупорки полимерными частицами пористой среды низкопроницаемых пропластков и обеспечения более полного и равномерного охвата пласта процессом нефтевытеснения.

Способ осуществляют в следующей последовательности. Для выбранного участка нефтяной залежи, представленного слоистонеоднородным пластом, предварительно исследуют коллекторские свойства каждого пропластка. Для этого на образцах породы продуктивного пласта по стандартной методике (см. ОСТ 39-204-96 "Нефть", МНП, М, 1986) определяют проницаемость, пористость и капиллярные характеристики пористой среды: распределение пор по размерам и средний диаметр пор. Затем для каждого пропластка подбирают полимер из условия, чтобы средний диаметр поровых каналов превышал средний размер макромолекулы. Размер макромолекул полимеров разной молекулярной массы определяется на стандартных приборах методом светорассеяния или методом ЯМР. Обычно, чем больше молекулярная масса полимера, тем больше размер молекулы. Из выбранных полимеров готовятся растворы расчетных концентраций и на образцах пород проводят испытания на фильтруемость, т.е. на способность полимера проникать в поровое пространство, не закупоривая входную поверхность образца (PD-39-0148311-206-85, Гипровостокнефть, г. Куйбышев, 1981 г. ). При хорошей фильтруемости полимера, его отбирают для практического использования.

На промысле с помощью существующего оборудования из выбранных полимеров готовят растворы необходимых концентраций и через нагнетательную скважину, снабженную пакером, закачивают в высоко- и низкопроницаемые интервалы пласта соответственно подобранные реагенты. После окончания закачки оторочек дальнейшее их продвижение по пласту осуществляют обычной водой, используемой для ППД на данном месторождении.

Эффективность предлагаемого способа изучали в лабораторных условиях.

При испытании были использованы следующие материалы. В качестве высокомолекулярного полимера порошкообразный полиакриламид (ПАА) Аккотрол-623, закупаемый в Японии и применяемый на месторождениях России (фирма-изготовитель "Мицуи-Цианамид"). Его молекулярная масса 12 млн.

В качестве низкомолекулярного полимера КМЦ-600 отечественного производства (ТУ 6-55-40-90). Его молекулярная масса 2 млн.

В качестве моделей пласта использовали линейные модели. Линейные модели представляли собой стеклянные трубы длиной 540-655 мм с внутренним диаметром 14-15,4 мм, набитые чистым кварцевым песком проницаемостью 0,24-1,2 мкм2 В качестве модели нефти использовали дегазированную нефть горизонта D1 Ромашкинского месторождения, разбавленную керосином. Вязкость нефти составляла 3,8 мПа•c. В качестве модели воды использовали водопроводную воду.

Опыты проводились в следующей последовательности.

1. Определяли фильтруемость полимеров.

Модели под вакуумом насыщались водопроводной водой, определялся поровый объем и проницаемость при фильтрации однородной жидкости. Готовились водные растворы полимеров Аккотрол-623 и КМЦ-600 одинаковой вязкости, равной 2,45 мПа•c. Концентрация раствора Аккотрол-623 оставляла 0,03% а раствора КМЦ-600 0,25% На ЯМР-релаксометре определяли средний размер макромолекул: 6•10-4см Аккотрол-623 и 4•10-5см КМЦ-600. Для каждой модели пласта по известной проницаемости и пористости определяли средний размер поровых каналов по формуле:

где
K проницаемость, m пористость.

Средние размеры макромолекул сопоставлялись со средним размером поровых каналов. По результатам сопоставления были отобраны для проверки на фильтруемость в пористой среде с проницаемостью выше 0,4 мкм2 Аккотрол-623, а ниже 0,4 мкм2 КМЦ-600.

Опыты по фильтрации полимерных растворов проводились при постоянном перепаде давления.

Количественно фильтруемость растворов полимеров в данной пористой среде оценивается следующей величиной

где ΔRвх изменение фактора сопротивления на входном участке за время T=1 ч; Rосн. фактор сопротивления на основной части модели пласта или керна.

При отсутствии какой-либо кольматации порового пространства входного участка ΔRвх= O и Ф _→ ∞ т.е. фильтруемость раствора полимера отличная.

Если Ф > 5, то фильтруемость считается хорошей. При 1 < Ф < 5 фильтруемость удовлетворительная. Когда Ф < 1, фильтруемость считается плохой.

Результаты опытов представлены в табл. 1.

Как видно из табл. 1, фильтруемость полимера высокой молекулярной массы в моделях пласта с проницаемостью ниже 0,4 мкм2 плохая по причине полной блокировки входного участка. Раствор КМЦ обладает хорошей и отличной фильтруемостью во всем диапазоне проницаемостей поровых сред.

2. Исследовали эффективность вытеснения нефти полимерными растворами и низкой молекулярной массы из моделей слоисто-неоднородного пласта по известному способу.

Для подготовки к опытам по вытеснению модели вакуумировали и насыщали пресной водопроводной водой. Затем вода вытеснялась нефтью для создания остаточной неподвижной водонасыщенности. Подсчитывались величины начального объема нефти и остаточного объема воды. После насыщения нефтью модели выдерживались 72 ч для установления сорбционного равновесия.

Две модели различной проницаемости соединялись параллельно, т.е. имели общий вход, и таким образом имитировали слоистую неоднородность пласта.

Характеристики моделей приведены в табл. 2.

При параллельной обвязке соединялись модели N 1 и N 2 и модели N 3 и N 4. Отношение проницаемостей пропластков составляло 2,4-3,6. Остаточная (связанная) водонасыщенность в пористой среде содержалась в количестве 21-26% от порового объема моделей.

Нефть вязкостью 3,8 мПа•c вытеснялась оторочками растворов КМЦ и ПАА одинаковой вязкости, равной 2,45 мПа•c. Размер оторочки составлял 30% от суммарного порового объема обоих пропластков.

Оторочка ПАА закачивалась в двухслойную модель N 1-2, а оторочка КМЦ в модель N 3-4. Для визуального наблюдения за процессом вытеснения и распределением оторочки между пропластками разной проницаемости растворы полимеров подкрашивались специальным индикатором.

Было проведено несколько серий опытов. Во всех опытах вытеснение нефти продолжалось до 98% -ной обводненности. Для сравнения проводили опыты по вытеснению нефти только одной водой.

Осредненные результаты опытов представлены в табл. 3.

Как видно из табл. 3 нефтеотдача слоисто-неоднородного пласта в целом при воздействии полиакриламидом и эфиром целлюлозы примерно одинаковая, что составляет (в пределах погрешностей замеров) 58% Однако, при вытеснении нефти раствором КМЦ необходимо более чем в 1,6 раза больше прокачать воды, чем при вытеснении раствором ПАА.

Нефтеотдача менее проницаемого пропластка при закачке раствора ПАА на 5,4% ниже, чем при закачке КМЦ. Этого следовало ожидать, т.к. фильтруемость раствора КМЦ в низкопроницаемой пористой среде гораздо выше, чем ПАА. Последнее наблюдалось и визуально: раствор КМЦ продвигался по низкопроницаемому пропластку по всей длине, а раствор ПАА только по высокопроницаемому пропластку. Низкопроницаемый пропласток был частично заблокирован полимерным веществом; извлечение нефти из него происходило путем вытеснения водой, закачиваемой после оторочки. Поэтому и величина нефтеотдачи менее проницаемого пропластка при закачке ПАА и воды примерно одинаковая - 52,2% и 51,8% соответственно. Более равномерно происходило вытеснение нефти по пропласткам при закачке КМЦ, чем ПАА.

Эффективность полимерного воздействия при закачке высокомолекулярного ПАА (5,8% ) можно объяснить только увеличением полноты вытеснения нефти (микроохвата) из высокопроницаемого пропластка. Эффективность полимерного воздействия при закачке низкомолекулярного КМЦ (5,6%) объясняется более полным охватом вытеснением малопроницаемого пропластка. Однако, в целом при закачке как высоко- так и низкомолекулярных полимеров в слоистый пласт абсолютный прирост нефтеотдачи по сравнению с обычным заводнением небольшой и составляет в среднем 5,7%
Таким образом показано, что известный способ полимерного воздействия на неоднородные нефтяные пласты, когда в качестве загустителя воды в высоко- и низкопроницаемые интервалы продуктивной толщи закачивается одновременно только один полимер (с любой молекулярной массой), является недостаточно эффективным.

3. Проводили испытания предлагаемого способа.

По предлагаемому способу оторочка полимера с высокой молекулярной массой закачивалась в высокопроницаемый пропласток, а оторочка полимера с низкой молекулярной массой закачивалась в менее проницаемый пропласток, т.е. закачка осуществлялась одновременно-раздельно. Объем оторочки каждого раствора составлял 15% от порового объема каждого пропластка. В целом для двухслойной модели пласта объем оторочки составлял 30% от суммарного объема как и в известном способе. Результаты испытаний приведены в последней строке табл.3.

Как видно из табл.3, предлагаемый способ позволяет увеличить коэффициент нефтеотдачи на 31,7% против 5,7% у известного.

Технико-экономическая эффективность от применения предлагаемого способа достигается за счет увеличения как коэффициента охвата, так и коэффициента вытеснения, что позволяет добыть дополнительное количество нефти практически без увеличения затрат.

Похожие патенты RU2095555C1

название год авторы номер документа
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНЫХ ПО ПРОНИЦАЕМОСТИ НЕФТЯНЫХ ПЛАСТОВ 2002
  • Корнильцев Ю.А.
  • Волков Ю.А.
RU2214506C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО ПЛАСТА С ПОДСТИЛАЮЩЕЙ ВОДОЙ 1996
  • Волков Ю.А.
  • Чекалин А.Н.
  • Конюхов В.М.
RU2112870C1
СПОСОБ ПОВЫШЕНИЯ НЕФТЕОТДАЧИ ПЛАСТА 2020
  • Румянцева Елена Александровна
  • Маринин Иван Александрович
RU2739272C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 2001
  • Алтунина Л.К.
  • Кувшинов В.А.
  • Стасьева Л.А.
  • Праведников Н.К.
  • Маврин М.Я.
  • Зазирный В.А.
  • Маслянцев Ю.В.
RU2189441C1
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖИ ВЯЗКОЙ НЕФТИ ИЛИ БИТУМА 2006
  • Фасахутдинов Василь Габдулхакович
RU2318998C1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 2013
  • Хисамов Раис Салихович
  • Идиятуллина Зарина Салаватовна
  • Плаксин Евгений Константинович
  • Салихов Айрат Дуфарович
  • Оснос Лилия Рафагатовна
RU2535762C2
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОЙ НЕФТЯНОЙ ЗАЛЕЖИ 2015
  • Хисамов Раис Салихович
  • Петров Владимир Николаевич
  • Газизов Ильгам Гарифзянович
  • Ахмадуллин Рустам Хамзович
  • Данилов Данил Сергеевич
  • Миронова Любовь Михайловна
  • Петрова Ольга Вячеславовна
RU2594185C1
СПОСОБ РЕГУЛИРОВАНИЯ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА (ВАРИАНТЫ) 2007
  • Ибатуллин Равиль Рустамович
  • Ибрагимов Наиль Габдулбариевич
  • Хисаметдинов Марат Ракипович
  • Ризванов Рафгат Зиннатович
  • Ганеева Зильфира Мунаваровна
  • Абросимова Наталья Николаевна
  • Михайлов Андрей Валерьевич
  • Яхина Ольга Александровна
RU2341650C1
СПОСОБ ВОЗДЕЙСТВИЯ НА ЗАЛЕЖЬ С РАЗНОПРОНИЦАЕМЫМИ ПЛАСТАМИ 1991
  • Топчиев Д.А.
  • Желтов Ю.В.
  • Кудинов В.И.
  • Ким М.Б.
  • Шурупов Е.В.
  • Приклонский А.Ю.
  • Ступоченко В.Е.
  • Яновский Ю.Г.
RU2026968C1
СПОСОБ ГРАФИЧЕСКОГО ОТОБРАЖЕНИЯ МНОГОПЛАСТОВЫХ ГЕОЛОГИЧЕСКИХ ОБЪЕКТОВ 1996
  • Свиридова Л.Н.
  • Шарапова Л.Н.
RU2115092C1

Иллюстрации к изобретению RU 2 095 555 C1

Реферат патента 1997 года СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНЫХ ПО ПРОНИЦАЕМОСТИ НЕФТЯНЫХ ПЛАСТОВ

Способ разработки неоднородных по проницаемости нефтяных пластов включает закачку в каждый пропласток одновременно-раздельно оторочек растворов полимеров, причем в высокопроницаемые пропластки закачивают полимеры высокой молекулярной массы, а в низкопроницаемые пропластки закачивают полимеры низкой молекулярной массы, при этом полимер выбирают из условия, чтобы средний размер макромолекул был меньше среднего диаметра поровых каналов.

Формула изобретения RU 2 095 555 C1

Способ разработки неоднородных по проницаемости нефтяных пластов, включающий закачку через нагнетательные скважины оторочки раствора полимера с последующим вытеснением водой, отличающийся тем, что в каждый пропласток одновременно раздельно закачивают оторочки растворов полимеров, причем в высокопроницаемые пропластки закачивают полимеры высокулярной массы, а в низкопроницаемые пропластки закачивают полимеры низкой молекулярной массы, при этом полимер подбирают из условия, чтобы средний размер макромолекул был меньше среднего диаметра поровых каналов.

Документы, цитированные в отчете о поиске Патент 1997 года RU2095555C1

US, патент, 3547199, кл
Рельсовый башмак 1921
  • Елютин Я.В.
SU166A1
SU, авторское свидетельство, 681993, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 095 555 C1

Авторы

Кудрявцев Г.В.

Волков Ю.А.

Муслимов Р.Х.

Даты

1997-11-10Публикация

1994-06-14Подача