Изобретение относится к холодильному оборудованию и может найти применение в автомобильной промышленности для кондиционирования воздуха в салоне легковых автомобилей или в кабинах других видов транспорта.
Известны компрессионные кондиционеры воздуха для автомобилей с использованием хладоагентов, например фреона, которые конструктивно сложнее и дороже, чем вихревые трубы с воздушным компрессором. Кроме того, применение фреона или аммиака нежелательно, т.к. они экологически вредны и в настоящее время эти хладоагенты заменяются другими.
Известны также вихревые кондиционеры, которые применяются в разных областях народного хозяйства, например, в пищевой промышленности, авиации, космонавтике, шахтных забоях, где температура окружающего воздуха доходит до 50oC и т.п. Однако применения в автомобильной промышленности вихревые кондиционеры не нашли по причине значительного расхода сжатого воздуха и отсутствия малогабаритных высокопроизводительных компрессоров дающих сжатый воздух свободный от масла и пыли, т.е. экологически чистый.
Вихревые кондиционеры с большой холодопроизводительностью экономически выгодно применять там, где есть постоянный источник сжатого воздуха, хорошо очищенного от пыли и масла.
Для кондиционеров малой холодопроизводительности, например, салонов легковых автомобилей, целесообразно иметь вихревой кондиционер с малыми габаритами, высокопроизводительным компрессором дающим чистый сжатый воздух, свободный от пыли и масла.
В отечественном автомобилестроении вихревые кондиционеры не применяются, поэтому сравнительную оценку можно сделать по степени сложности и экологической чистоте с обычным компрессионным кондиционером, работающим с хладоагентами, например, фреоном или аммиаком.
Вихревой кондиционер может быть использован не только для охлаждения воздуха, но и для обогрева салона автомобиля, где двигатели внутреннего сгорания с воздушным охлаждением, так как температура горячего воздуха в вихревой трубе может достигать 70-80oC при тех же коэффициентах расхода "μ" по холодному потоку. Таким образом, целесообразность применения вихревого кондиционера очевидна. Надежность самой вихревой трубы очень велика, т.к. она не содержит подвижных частей и практически не изнашивается, а надежность кондиционера будет зависеть от компрессора и его привода.
Известны воздушные компрессоры, применяемые в автомобилестроении (см. например, Устройство и ремонт автомобилей. М. Высшая школа 1972, стр. 172-174), и бытовые, конструктивно, в большинстве случаев поршневые с одной рабочей полостью и обязательно с системой смазки всех трущихся деталей узлов и уплотнительных колец. Поэтому сжатый воздух от них содержит пары масла, что недопустимо для кондиционера.
Кроме того, удельная производительность на единицу веса компрессора при одинаковых оборотах и объеме цилиндра невелика, т.к. используется только полость цилиндра над поршнем.
Недостатком прототипа компрессора являются большие габариты, малая удельная производительность и наличие паров масла в сжатом воздухе.
В предлагаемой же конструкции компрессора используются две полости цилиндра (над поршнем и под поршнем штоковая) т.к. цилиндр от картера отделен герметичной крышкой с уплотнительным узлом из самосмазывающегося материала под шток поршня.
На один оборот коленчатого вала компрессора приходится два рабочих цикла. Таким образом, габариты и вес компрессора значительно меньше, чем у обычных поршневых компрессоров. Кроме этого, применение уплотнительных трущихся деталей из самосмазывающихся материалов, обеспечивают получение сжатого воздуха свободного от масла.
Задачей изобретения является повышение удельной производительности компрессора, получение чистого, свободного от масла и пыли сжатого воздуха, а также повышение удельной холодопроизводительности неохлаждаемой вихревой трубы.
Это достигается тем, что цилиндр компрессора выполнен с двумя рабочими полостями, а поршень выполнен коротким и состоит из двух частей, соединенных жестко и герметично одним концом штока, в каналах которого расположены уплотнительные кольца из самосмазывающихся материалов с резиновыми кольцами, поджатыми стальным кольцом при помощи нажимных винтов, расположенных в верхней части поршня по периметру кольца, и разделительные кольца, выполненные из самосмазывающихся материалов и расположенные по обе стороны от уплотнительных колец, а через второй конец штока жестко соединен с ползуном, содержащим два опорных ролика, контактирующих с направляющими, жестко закрепленными на крышке, а ползун подвижно соединен с шатуном, другой конец которого соединен с кривошипном коленчатого вала, установленного в опорном поршневом узле, жестко соединенным с картером, а выходной конец вала жестко соединен с фрикционным диском при помощи шпонки и гайками, коническая поверхность которого взаимодействует с конической поверхностью приводного шкива, подвижно соединенного через втулку с коленчатым валом и подводковой муфтой, которая соединена тягами со штоком пневмопривода через коромысло, который взаимодействует с мембраной, упруго и герметично закрепленной в корпусе, жестко закрепленным на картере компрессора, а сопловый ввод улитки вихревой трубы выполнен с наклонным пазом, расположенным таким образом, что верхняя кромка сопла лежит в одной плоскости с кромкой наклонного паза.
На фиг. 1 и 2 показана конструкция вихревого кондиционера; на фиг. 3 - сечение улитки по сопловому вводу; на фиг 4 конструкция поршня; на фиг. 5 - ползун с опорными роликами.
Вихревой кондиционер состоит из вихревой трубы, содержащей цилиндрическую трубу 1, внутри которой жестко установлена крестовина 2, герметично соединенную одним концом с корпусом 3, внутри которого расположена улитка 4 с наклонным пазом 5, расположенным таким образом, что верхняя кромка сопла лежит в одной плоскости с кромкой наклонного паза, и диафрагма 6, штуцер 7, угольник 8 с теплоизоляционной втулкой 9, соединенный с трубой 10 с теплоизоляционной втулкой 11, другой конец которой соединен с крышкой 12 глушителя 13, соединенного болтом 14 с крышкой, крепежные гайки 15, фиксирующие вихревую трубу на стенке воздуховода 16, а другой конец трубы соединен с втулкой 17, внутри которой расположен регулирующий клапан 18 с гайкой 19 и контргайкой 20, и компрессора, содержащего цилиндр 21 с гильзой 22, всасывающие клапаны 23 и нагнетательные клапаны 24, крышку 25 (отделяющую штоковую полость цилиндра от картера) с направляющей втулкой 26 и уплотнительным узлом по штоку 27 выполненных из самосмазывающихся материалов, поршень 28, состоящий из двух частей, соединенных жестко и герметично штоком 29, в канавках поршня расположены уплотнительные кольца 30 из самосмазывающихся материалов с резиновыми кольцами 31 поджатыми стальным кольцом 32 при помощи нажимных винтов 33, расположенных в верхней части поршня по периметру кольца и разделительные кольца 34 выполненные так же из самосмазывающихся материалов и расположенные по обе стороны от уплотнительных колец, второй конец штока жестко соединен с ползуном 35, содержащим два опорных ролика 36, контактирующих с направляющими 37 жестко закрепленными на крышке, а ползун 33 подвижно соединен с шатуном 38, другой конец которого соединен подвижно с кривошипом коленчатого вала 39, установленного в опорном подшипниковом узле 40, жестко соединенном с картером 41, а выходной конец вала 39 жестко соединен с фрикционным диском 42 при помощи шпонки 43 и гайки 44, коническая поверхность которого взаимодействует с конической поверхности приводного шкива 45, подвижно соединенного через втулку 46 с коленчатым валом, а ступица шкива соединена с поводковой муфтой 47, которая соединена тягами (не показано) с коромыслом 48, соединенным со штоком 49, взаимодействующим с мембраной 50 и пружиной 51, укрепленной упруго и герметично в корпусе 52 закрепленного на корпусе картера.
Принцип работы вихревого кондиционера состоит в следующем: приводной шкив 45 соединен с двигателем при помощи клинового ремня. При работающем двигателе и отсутствии управляющего пневматического сигнала "Ру" на пневмопривод 52, под действием пружины 51 шток 49 с коромыслом 48, соединенные двумя тягами ( не показано), с проводкой муфтой 47, соединенной со ступицей шкива 45 через подшипник качения, напрессованный на ступицу, переместит шкив вправо и разъединит его с фрикционным диском 42, жестко соединенным с коленчатым валом 39, и компрессор работать не будет, а приводной шкив будет вращаться от двигателя вхолостую. При подаче же давления в пневмопривод 52 шкив 45 войдет в зацепление и фрикционным диском 42, и коленчатый вал 39 начнет вращаться. При этом вращательное движение вала преобразуется в поступательное при помощи кривошипа и шатуна 38, подвижного соединенного с ползуном 35, который снабжен двумя роликами 36 (см. фиг.5), контактирующими с направляющими 37, чем исключается воздействие боковых усилий на шток 29 и подшипниковой узел 26 с уплотнителем 27. Ползун 35 жестко соединен со штоком 29, а шток с поршнем 28 и таким образом поршень в цилиндре 21 с гильзой 22 движется возвратно-поступательно.
При движении поршня в нижнее крайнее положение открывается всасывающий клапан 23 и воздух из атмосферы через фильтр "ф" засасывается в полость цилиндра над поршнем. Одновременно в нижней полости под поршнем происходит сжатие воздуха и подача сжатого воздуха через нагнетательный клапан 24 в трубопровод. За следующий полуоборот произойдет сжатие в верхней полости над поршнем и подача через второй нагнетательный клапан 24 в трубопровод, соединенный с вихревой трубой. Таким образом, за один оборот вала компрессора совершается два рабочих хода.
Сжатый воздух поступает по трубопроводу через штуцер 7 (см. фиг. 3) в сопловой ввод улитки 4, имеющий наклонный паз 5 и в собранном виде (корпус, улитка и диафрагма) образует вакуумный мешок, который способствует увеличению расхода воздуха через сопло и позволяет уменьшить толщину выходящего потока за счет изменения высоты и увеличения ширины прямоугольного сопла до отношения 1:5, хотя рекомендуемое отношение 1:2. Увеличение периметра выходного прямоугольного сечения не уменьшит расход, так как вакуумный мешок 5 постоянно создает подсос и расход через такое сопло увеличивается. Воздух с большой скоростью входя в трубу 1 по спиральному вводу улитки 4, приобретает сложное вихревое движение, характеризующееся винтовым перемещением, внешние слои воздуха вращаясь подвигаются в осевом направлении от сечения через сопло к сечению, проходящему через отверстие гнездо во втулке 17 регулирующего клапана, разогреваются и через отверстия во втулке 17 сбрасываются в атмосферу. Внутренние слои воздуха, вращаясь в ту же сторону что и наружные, движутся в осевом направлении в противоположную сторону.
Внутренний холодный поток возникает из внешнего (механизм преобразования потоков см. Мартынов А. В. Бродянский В.М. Что такое вихревая труба? М: Энергия. 1976 г. стр. 19-24. 29-31 (см. стр. 31 строки 6-9 и дальше до конца стр. 32) стр. 44). Из рассмотренного механизма движения потоков воздуха и преобразования энергии видно, что с уменьшением толщины потока воздуха при той же площади поперечного сечения сопла увеличивается Δt
Таким образом холодный поток воздуха через диафрагму 6 угольник 8, трубу 10, корпус 12, фильтр-глушитель поступает в воздуховод и через него, например, в салон автомобиля.
название | год | авторы | номер документа |
---|---|---|---|
РОТОРНО-ПОРШНЕВАЯ МАШИНА ДЛЯ ХОЛОДИЛЬНОЙ ГАЗОВОЙ УСТАНОВКИ | 1992 |
|
RU2036392C1 |
ДВУХТАКТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 2007 |
|
RU2361098C1 |
ДВУХТАКТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО НАГРЕВАНИЯ РАБОЧЕГО ТЕЛА | 2011 |
|
RU2465479C1 |
ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 1997 |
|
RU2146010C1 |
ДВУХТАКТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО НАГРЕВАНИЯ | 2015 |
|
RU2603504C1 |
Двигатель внутреннего сгорания | 1984 |
|
SU1368461A1 |
ТРАНСПОРТНЫЙ ЭЛЕКТРОГАЗОВЫЙ КОМПЛЕКС КАШЕВАРОВА "ТЭКК" | 1994 |
|
RU2097212C1 |
Атмосферный компрессорно-реактивный летательный аппарат | 2016 |
|
RU2617863C1 |
БЕСШАТУННЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 2005 |
|
RU2298107C1 |
БЕЗМАСЛЯНЫЙ ВОЗДУШНЫЙ КОМПРЕССОР ДЛЯ РЕЛЬСОВЫХ ТРАНСПОРТНЫХ СРЕДСТВ | 2012 |
|
RU2587019C2 |
Использование: в холодильном оборудовании и может найти применение в автомобильной промышленности для кондиционирования воздуха в салоне легковых автомобилей или в кабинах других видов транспорта. Сущность изобретения: цилиндр компрессора выполнен двухполостным, а поршень выполнен коротким и состоит из двух частей, соединенных жестко и герметично штоком, в канавках поршня расположены уплотнительные кольца из самосмазывающихся материалов с резиновыми кольцами, прижатыми стальным кольцом при помощи нажимных винтов, расположенных в верхней части поршня по периметру кольца, и разделительные кольца, выполненные из самосмазывающихся материалов, расположенные по обе стороны от уплотнительных. Второй конец штока жестко соединен с ползуном, содержащим два опорных ролика, контактирующих с направляющими, жестко закрепленными на крышке. Сопловой ввод улитки вихревой трубы выполнен с наклонным пазом, расположенным таким образом, что верхняя кромка сопла лежит в одной плоскости с кромкой наклонного паза. 2 з.п. ф-лы, 5 ил.
Мартынов А.В., Бродянский В.М | |||
Что такое вихревая труба | |||
- М.: Энергия, 1976, с.114-120. |
Авторы
Даты
1997-11-10—Публикация
1994-12-07—Подача