Изобретение относится к электроизмерительной технике и может быть использовано, например, при построении счетчиков энергии электросети.
Лучшие электромеханические счетчики энергии сети имеют точность измерения, ограниченную классом 0,5.
Разработка электронных аналоговых, а затем цифровых счетчиков электроэнергии открыла новые возможности в повышении точности измерения примерно на порядок.
Совершенствование электронных счетчиков электроэнергии сети, продолжающееся до сих пор, идет в направлении осуществления компенсации аппаратных погрешностей или погрешностей, возникающих в особых режимах работы электросети.
Известно, например, электронное устройство для измерения электрической энергии [1] в котором для повышения точности измерения взятие выборок напряжений и токов во всех фазах жестко синхронизировано с периодом напряжения первой фазы.
Известен цифровой измеритель электрической энергии [2] в котором осуществлена компенсация нелинейных составляющих погрешностей, возникающих при измерении энергии электросети с резкопеременными нагрузками.
Известен взятый в качестве прототипа электронный измеритель мощности и энергии [3] в котором для повышения точности обеспечено преобразование двухполярных входных сигналов в униполярные. Устройство прототип [3] содержит два блока выборки, блок преобразования сигналов, линию связи, блок управления и обработки.
Общим недостатком известных решений, включая прототип [3] является их неспособность учесть реальную погрешность, вносимую измерительными преобразователями (трансформаторами) тока и напряжения электросети (ТТ и ТН), с вторичных цепей которых снимаются входные для электронного измерителя сигналы. Указанная погрешность, как показали исследования находящихся в эксплуатации ТТ и ТН, может существенно отличаться от записанной в паспорте, и зависит от электрического режима работы ТТ и ТН, а также от температуры окружающей среды. Реальные отклонения погрешности находящихся в эксплуатации ТТ и ТН от записанной в паспорте настолько значимы, что их неучет сводит на нет преимущества по точности электронной измерительной системы перед электромеханической.
Задача изобретения состоит в создании измерителя, учитывающего изменения погрешности трансформаторов тока и напряжения в процессе их эксплуатации и, таким образом, способного реально обеспечить повышенную точность измерения параметров режима электросети.
Предметом изобретения является измеритель параметров режима электрической сети, содержащий по крайней мере два блока выборки, блок аналого-цифрового преобразования, блок обработки и линию связи выхода блока аналого-цифрового преобразования с входом блока обработки, группа выходов которого образуют информационные выходы измерителя, причем вход данных первого блока выборки предназначен для подключения к измерительному преобразователю фазного тока электросети, вход данных второго блока выборки предназначен для подключения к измерительному преобразователю фазного напряжения электросети, выход датчика входного тока первого блока выборки и выход датчика входного напряжения второго блока выборки подключены к первому и второму входам блока аналого -цифрового преобразования соответственно, отличающихся согласно изобретения, тем что в первый блок выборки введен датчик входного тока, а блок аналого-цифрового преобразования снабжен третьим и четвертым входами, к которым подключены выходы датчика входного напряжения первого блока выборки и датчика входного тока второго блока выборки соответственно, блок обработки выполнен с возможностью вычисления погрешностей измерительных преобразователей и учета их при определении параметров режима электросети.
Устройство, характеризующееся указанной совокупностью признаков, учитывает изменения погрешности находящихся в эксплуатации измерительных преобразователей тока и напряжения в зависимости от электрического режима сети и, таким образом, позволяет реально обеспечить точность измерения, соответствующую классу 0,1.
Изобретение имеет развитие, заключающееся в том, что блок обработки снабжен дополнительным входом, предназначенным для подключения к датчику температуры окружающей среды. Это позволяет учесть температурные изменения погрешности измерительных преобразователей и дополнительно повысить точность измерения.
Сущность изобретения поясняется чертежами
На фиг. 1 приведена блок-схема измерителя с раскрытием выполнения блоков выборки применительно к одной фазе электросети; на фиг. 2 схема внутреннего выполнения блока преобразования; на фиг. 3 функциональная схема, соответствующая алгоритму работы блока обработки.
Устройство фиг. 1 содержит первый и второй блоки 1 и 2 выборки, блок 3 аналого-цифрового преобразования сигналов, линию 4 связи выхода блока 3 с входом блока 5 обработки, группа выходов 6 которого образует информационные выходы измерителя.
Блок 1 имеет вход 7 данных и выходы 8,9, а блок 2 вход 10 данных и выхода 11, 12. Выход 8 является выходом датчика 13 входного тока блока 1 и подключен к первому входу 14 блока 3, а выход 11 является выходом датчика 15 входного напряжения блока 2 и подключен к второму входу 16 блока 3.
В блок введен датчик 17 входного напряжения, а в блок 2 введен датчик 18 входного тока. При этом блок 3 снабжен третьим входом 19, к которому подключен выход 9, являющийся выходом датчика 17, и четвертым входом 20, к которому подключен выход 12, являющийся выходом датчика 18.
Входы 7 и 10 блоков 1 и 2 предназначены для подключения к измерительным преобразователям 21 и 22 соответственно фазного тока и фазного напряжения электросети.
Блок 5 обработки может быть снабжен входом 23, предназначенным для подключения к датчику 24 температуры окружающей среды.
Измерительные преобразователи 21 и 22 (трансформаторы фазного тока и фазного напряжения соответственно), а также датчик 24 (см. пунктир на фиг. 1) не входят в состав заявленного объекта и приведены на фиг. 1 для пояснения работы устройства.
Блок 3 применительно к одной фазе электросети может быть выполнен в виде (фиг. 2) аналого-цифровых преобразователей 25, 26, 27, 28 на входах и многоканального коммутатора 29 на выходе.
В качестве линии 4 может быть использована проводная или волоконно-оптическая линия связи с выходом преобразователем последовательного кода в параллельный.
Блок 5 может быть выполнен на базе микроЭВМ, производящей вычисления в соответствии с функциональной схемой фиг.3.
Измеритель работает следующим образом.
На входы 7 и 10 поступают мгновенные значения сигналов с вторичных цепей трансформатора 21 тока и трансформатора 22 напряжения фазы электросети.
С выходом 8 и 9 блока 1 снимаются мгновенные значения тока и напряжения трансформатора 21 фазного тока, а с выходов 11 и 12 блока 2 мгновенные значения напряжения и тока трансформатора 22 фазного напряжения.
Указанные сигналы преобразуются в блоке 3 в последовательный цифровой код и, пройдя линию 4 связи, поступают на обработку в блок 5.
Блок 5, согласно функциональной схеме фиг. 3, по мгновенным значениям тока iI и напряжения uI вторичной цепи трансформатора 21 тока, а также тока iU и напряжения uU вторичной цепи трансформатора 22 напряжения производит вычисление среднеквадратичных значений II, DI, IU, UU за период Т переменного тока сети.
Кроме того, блок 5 определяет угол Φ между током iI трансформатора 21 тока и напряжением uU трансформатора 22 напряжения, активную мощность P, кажущуюся мощность S и реактивную мощность Q.
Величины II, UI, II, Uu, v и дополнительно температура (вход 23) являются исходными данными для вычисления амплитудных (ΔI и ΔU) и угловых (ΔΦI и ΔΦU) погрешностей трансформаторов 21 и 22 тока и напряжения. Вычисленные погрешности ΔI, ΔU, ΔΦI, ΔΦU используются в блоке 5 для определения (см. фиг. 3) уточненных (индекс "y" на фиг. 3) значений тока Iy, напряжения Uy, активной мощности Py, кажущейся мощности Sy и реактивной мощности Qy.
Электроэнергия Ay вычисляется путем непрерывного суммирования произведений PyT.
Таким образом, предложенное решение позволяет выбирать и использовать в качестве исходных данных для вычислений искомых параметров не только мгновенные значения тока трансформаторов тока (ТТ) и мгновенные значения напряжения трансформаторов напряжения (ТН), но и мгновенные значения напряжения ТТ, а также мгновенные значения тока ТН и дополнительно температуру среды.
То есть, в заявленном устройстве исходными для вычислений являются данные, непрерывно следящие за изменениями рабочих точек вольт амперных характеристик ТТ и ТН, и дополнительно температура, влияющая на положение указанных рабочих точек.
Поэтому заявленное решение позволяет осуществить коррекцию выходных параметров измерения в зависимости от реальной погрешности, вносимой находящимися в эксплуатации трансформаторами тока и напряжения, и соответственно повысить точность измерительной системы в целом.
По схеме фиг. 1, с учетом выполнения блока 3 по схеме фиг.2 и выполнения по алгоритму, соответствующему фиг.3, был собран макет предложенного устройства. При этом блок 3 был выполнен с использованием интегральной схемы К1108ПВ2 и обеспечивал время преобразования и записи в память вычислителя 5, равное 3 мкс на канал. Частота дискретизации аналого-цифрового преобразования составляла 50 кГц. вычисления по алгоритму, соответствующему функциональной схеме фиг. 3, проводились на ЭВМ IBM PC AT после ввода исходных данных за 10 периодов сетевого напряжения.
Сравнительные испытания предусматривали выполнения измерений одного и того же параметра энергии электросети при изменении нагрузки от 0,8 до 1,0 с использованием сначала трансформаторов тока и напряжения класса точности 0,2, а затем другого класса точности 0,5.
Результаты измерений, как и предполагалось, не совпали. Однако при выполнении измерений с помощью образцового счетчика типа ЦЭ6802 изменения результата, т. е. погрешности измерений, составили 0,58 а при использовании собранного в соответствии с изобретением макета всего 0,17
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО РЕГУЛИРОВАНИЯ ЧАСТОТЫ N-ФАЗНЫХ ЭЛЕКТРОАГРЕГАТОВ | 1995 |
|
RU2084077C1 |
СПОСОБ ЗАЩИТЫ ГЕНЕРАТОРА ОТ ЗАМЫКАНИЙ НА ЗЕМЛЮ В ОБМОТКЕ СТАТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2096885C1 |
ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ | 1995 |
|
RU2106647C1 |
ПЕЧЬ ДЛЯ СЖИГАНИЯ ОТХОДОВ | 1996 |
|
RU2119123C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ЗАЗЕМЛЕНИЯ | 1996 |
|
RU2103699C1 |
УСТРОЙСТВО ДЛЯ ЗАЩИТЫ ТРЕХФАЗНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ | 1994 |
|
RU2081492C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ТВЕРДЫХ ЧАСТИЦ В ДЫМОВЫХ ГАЗАХ | 1994 |
|
RU2085909C1 |
РЕЛЕ ТОКА НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ | 1996 |
|
RU2100889C1 |
СПОСОБ ВЫЯВЛЕНИЯ АСИНХРОННОГО РЕЖИМА ЭЛЕКТРОПЕРЕДАЧИ | 1997 |
|
RU2117374C1 |
ЭЛЕКТРОННЫЙ СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ | 2000 |
|
RU2167427C1 |
Использование: в электроизмерительной технике, например, при построении счетчиков энергии электросети. Сущность: измеритель содержит первый и второй блоки выборки с входами для подключения к измерительным преобразователям соответственно фазного тока и фазного напряжения электросети, блок аналого-цифрового преобразования, блок обработки и линию связи выхода аналого-цифрового преобразования с входом блока обработки. Выход датчика входного тока первого блока выборки и выход датчика входного напряжения второго блока выборки подключены к первому и второму входам блока аналого -цифрового преобразования соответственно. Введение в первый блок выборки датчика входного напряжения, во второй блок выборки - датчика входного тока и снабжение блока аналого-цифрового преобразования третьим и четвертым входами, к которым подключены выходы датчика входного напряжения первого блока выборки и датчика входного тока второго блока выборки соответственно, а также выполнение блока обработки с возможностью вычисления погрешностей измерительных преобразователей и их учета при определении уточненных значений параметров электросети позволяет осуществить коррекцию выходных параметров измерителя в зависимости от реальной погрешности, вносимой находящимися в эксплуатации трансформаторами тока и напряжения, и таким образом повысить точность измерительной системы в целом. 1 з. п. ф-лы, 3 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Устройство для измерения электрической энергии | 1988 |
|
SU1596264A2 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Цифровой измеритель электрической энергии | 1990 |
|
SU1749842A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Электронный измеритель мощности и энергии | 1988 |
|
SU1638653A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-11-20—Публикация
1995-12-26—Подача