Изобретение относится к области светотехники и может быть использовано в установках, в которых для проведения фотостимулированных процессов требуется мощное излучение в необходимом спектральном диапазоне.
Известны импульсные лампы, обеспечивающие интенсивное свечение газоразрядной плазмы [1] Типовые конструкции содержат прозрачную в необходимом спектральном интервале оболочку, основные электроды и схему питания. Используемые в схемах питания коммутационные элементы (разрядники) определяют верхний предел удельной мощности, вводимой в газовый разряд, ограничивая частоту следования импульсов, а, следовательно, и среднюю мощность излучения. Кроме того, большие значения мощности таких ламп приводят к распылению материала электродов и оболочки и к увеличению вероятности разрушения оболочки, испытывающей в процессе импульса интенсивные механические нагрузки.
Известен цилиндрический источник [2] непрерывного тлеющего разряда, содержащий металлические электроды трубчатой формы, присоединенные к торцам газонаполненной диэлектрической трубки, прозрачной на рабочих длинах волн, систему охлаждения и источник питания. Недостатком данного аналога является наличие заметной продольной неоднородности интенсивности излучения по длине разрядной трубки и сложная система охлаждения, при которой проточной водой охлаждается только катод, а сама трубка не имеет водяного охлаждения.
Наиболее близким по технической сущности к заявляемой лампе является выбранная в качестве прототипа коаксиальная лампа-вспышка [3] содержащая две коаксиально установленные цилиндрические трубки из диэлектрика, образующие кольцевую разрядную полость, и два коаксиальных токопровода, один из которых размещен на внутренней поверхности внутренней трубки. В кольцевом разрядном промежутке, образованном двумя коаксиальными трубками, установлены кольцевые электроды, соединенные с внутренним и наружным коаксиальным токопроводами.
Недостатком прототипа является малая скорость отвода тепла от катода указанной лампы, что сказывается при переходе к большим частотам следования импульсов накачки, либо к накачке постоянным током, а также сравнительно малая площадь электродов, что ограничивает плотность электронного тока тлеющего разряда и, соответственно, среднюю мощность излучения газоразрядной плазмы.
Задачей настоящего изобретения является повышение средней мощности излучения лампы тлеющего разряда в оптическом диапазоне спектра.
Поставленная задача достигается тем, что в мощной лампе тлеющего разряда, содержащей две коаксиальные трубки из оптически прозрачного материала с установленными на торцах катодом и анодом, пространство между трубками заполнено рабочим газом, согласно изобретению катод и анод выполнены в виде соосных цилиндрических стаканов, расположенных, соответственно, на концах внутренней и внешней трубок таким образом, что один торец катода вставлен во внутреннюю трубку, а анод коаксиально охватывает внешнюю трубку, при этом внутренняя трубка продолжена за анод.
Кроме того, с целью расширения области применения внутри лампы, коаксиально трубкам и по всей длине, размещена металлическая труба, один из концов которой, с отверстиями по боковой поверхности, расположен в полости катода.
На чертеже схематично представлена заявляемая мощная лампа тлеющего разряда.
Лампа содержит две коаксиально установленные цилиндрические трубки: внешнюю 1 и внутреннюю 2. Обе трубки 1, 2 выполнены из оптически прозрачного материала. Пространство между трубками 1, 2 заполнено рабочим газом. Лампа также содержит два металлических коаксиально расположенных электрода: катод 3 и анод 4, которые выполнены в виде соосных цилиндрических стаканов и расположены, соответственно, на концах внутренней 2 и внешней 1 трубок. При этом один торец катода 3 вставлен во внутреннюю трубку 2, анод 4 коаксиально охватывает внешнюю трубку 1, а внутренняя трубка 2 продолжена за анод 4. Катод 3 и анод 4 подключены к источнику питания 5. Внутри лампы размещена металлическая труба 6, один из концов 7 которой, с отверстиями по боковой поверхности, расположен в полости катода 3.
Предлагаемая лампа работает следующим образом.
После наполнения лампы рабочим газом или смесью газов до рабочего давления и подачи от источника питания 5 импульсного или постоянного напряжения в разрядном промежутке зажигается тлеющий разряд, плазма которого излучает в спектральном диапазоне, определяемом составом и давлением рабочей смеси. Предлагаемая конструкция катода 3 и анода 4 в заявляемой лампе позволяет отвести большую тепловую мощность за счет непосредственного охлаждения катода 3 проточной водой и увеличения общих площадей катода 3 и анода 4, что повышает мощность накачки и увеличивает среднюю мощность излучения лампы. Установка во внутреннюю трубку 2 металлической трубы 6 позволяет устанавливать подводы системы охлаждения с одной стороны лампы и размещать данную лампу в полости малого диаметра, закрытые с одной стороны, что необходимо для ряда приложений.
Экспериментальные исследования мощной лампы тлеющего разряда показали, что в сравнении с устройством аналогичного назначения (прототип) заявляемое устройство повышает среднюю мощность излучения. Для сравнения рассматривались лампы с примерно одинаковыми геометрическими размерами коаксиальных трубок 1 и 2. Одна из ламп была подобна прототипу, а другая заявляемой мощной лампе тлеющего разряда. Использовались смеси, содержащие криптон и HCl, возбуждение которых приводило к наработке KrCl* молекул, излучающих в основном на λ ≈222 нм. Достигнутый при этом в оптимизированных по составу и давлению рабочих смесях, на одинаковой частоте следования импульсов питающего напряжения 100 Гц, уровень максимальной средней мощности излучения в заявляемой лампе был более чем в 3 раза больше по сравнению с лампой, подобной [3]
Источники информации, принятые во внимание при составлении описания изобретения
1. Басов Ю. Г. Источники накачки микросекундных лазеров, 1990, с. 88 - 118.
2. Головицкий А. П. Кан С.Н. Оптика и спектроскопия. Т. 75, вып. 3, с. 604 605, 1993.
3. Патент США N 3721851, кл.H 01 J 61/30, 1973.
название | год | авторы | номер документа |
---|---|---|---|
ЛАМПА ДЛЯ ПОЛУЧЕНИЯ МОЩНОГО ИЗЛУЧЕНИЯ В ОПТИЧЕСКОМ ДИАПАЗОНЕ СПЕКТРА | 1994 |
|
RU2067337C1 |
ЛАМПА ДЛЯ ПОЛУЧЕНИЯ ИМПУЛЬСОВ ИЗЛУЧЕНИЯ В ОПТИЧЕСКОМ ДИАПАЗОНЕ СПЕКТРА | 2001 |
|
RU2195044C2 |
РАБОЧАЯ СРЕДА ЛАМПЫ ТЛЕЮЩЕГО РАЗРЯДА НИЗКОГО ДАВЛЕНИЯ | 1995 |
|
RU2089962C1 |
СПОСОБ НАКАЧКИ ЛАМПЫ ТЛЕЮЩЕГО РАЗРЯДА С ЭЛЕКТРООТРИЦАТЕЛЬНЫМИ ГАЗАМИ В РАБОЧЕЙ СМЕСИ | 1995 |
|
RU2089971C1 |
РАБОЧАЯ СРЕДА ЛАМПЫ ТЛЕЮЩЕГО РАЗРЯДА | 1998 |
|
RU2151442C1 |
РАБОЧАЯ СРЕДА ЛАМПЫ ВЫСОКОЧАСТОТНОГО ЕМКОСТНОГО РАЗРЯДА | 1998 |
|
RU2154323C2 |
СПОСОБ ВАКУУМНОЙ ОБРАБОТКИ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ТРУБ | 1992 |
|
RU2039845C1 |
ЛАМПА ВАКУУМНАЯ УЛЬТРАФИОЛЕТОВОГО ДИАПАЗОНА СПЕКТРА | 2005 |
|
RU2291516C2 |
ГЕНЕРАТОР СУБНАНОСЕКУНДНЫХ ПУЧКОВ ЭЛЕКТРОНОВ | 2003 |
|
RU2242062C1 |
РАБОЧАЯ СРЕДА ЛАМПЫ ВЫСОКОЧАСТОТНОГО ЕМКОСТНОГО РАЗРЯДА | 2001 |
|
RU2200356C2 |
Сущность изобретения: мощная лампа тлеющего разряда содержит две коаксиальные трубки из оптически прозрачного материала с установленными на торцах катодом и анодом. Пространство между трубками заполнено рабочим газом. Катод и анод выполнены в виде соосных цилиндрических стаканов, расположенных, соответственно, на концах внутренней и внешней трубок таким образом, что один торец катода вставлен во внутреннюю трубку, а анод коаксиально охватывает внешнюю трубку, при этом внутренняя трубка продолжена за анод. Кроме того, внутри лампы, коаксиально трубкам по всей длине, размещена металлическая труба, один из концов которой с отверстиями на боковой поверхности расположен в полости катода. 1 з.п. ф-лы, 1 ил.
Басов Ю.Г | |||
Источники накачки микросекундных лазеров | |||
Способ приготовления консистентных мазей | 1919 |
|
SU1990A1 |
Головицкий А.П., Кан С.Н | |||
Оптика и спектроскопия | |||
Способ изготовления фанеры-переклейки | 1921 |
|
SU1993A1 |
Фальцовая черепица | 0 |
|
SU75A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
US, патент, 3721851, кл.H 01J 61/30, 1973 | |||
ТРУБЧАТАЯ ИМПУЛЬСНАЯ ГАЗОРАЗРЯДНАЯ ЛАМПА | 0 |
|
SU383114A1 |
Авторы
Даты
1997-11-20—Публикация
1995-07-18—Подача