Изобретение относится к области энергетики, в частности к тепловым двигателям, использующим изменения температуры окружающей среды для преобразования тепловой энергии в механическую при периодическом охлаждении и нагревании рабочего тела.
Изобретение может использоваться при строительстве и эксплуатации сооружений, создании электростанций (особенно в районах Крайнего Севера) и других установок.
Известен способ получения механической энергии [1] в котором рабочее тело (воду) нагревают до температуры испарения с получением механической энергии при фазовом переходе рабочего тела в пар с последующим охлаждением рабочего тела до температуры конденсации с совершением холостого хода.
Недостатками известного способа являются низкая эффективность при больших энергозатратах, малый коэффициент полезного действия.
Наиболее близким по технической сущности и решаемым задачам к заявляемому способу является способ получения механической энергии [2] в котором расширяющееся при замерзании рабочее тело (воду) охлаждают до температуры кристаллизации с получением механической энергии за счет увеличения объема рабочего тела при его фазовом превращении с последующим нагреванием рабочего тела до температуры плавления с совершением холостого хода.
Недостатками данного аналога являются: низкая эффективность способа вследствие малого (до 10%) расширения рабочего тела и значительной продолжительности кристаллизации и расплавления рабочего тела, невозможность получения механической энергии в области положительных температур.
Известен способ подъема давления природного газа [3] в котором используются газогидраты (клатратный лед), в которые для получения высокого давления нагревают до температуры их разложения. Однако в заявляемом способе в отличие от известного (а.с. N 237770) используют для получения механической энергии фазовый переход клатратного льда, получая при этом механическую энергию в области отрицательных температур, тем самым расширяя рабочий диапазон, то есть повышая эффективность способа.
Нами не обнаружено технических решений, в которых использовался бы фазовый переход клатратного льда с целью получения механической энергии.
Технической задачей предлагаемого изобретения является повышение эффективности использования способа за счет увеличения рабочего хода, сокращения времени фазового перехода рабочего тела, снижения энергозатрат, а также расширения температурного диапазона применения способа, в результате увеличения объема рабочего тела как при отрицательных, так и положительных температурах.
Указанная задача достигается тем, что перед заполнением рабочей камеры водой ее предварительно насыщают газом, способным образовывать с водой клатратный лед, а нагревание рабочего тела осуществляют до температуры разложения рабочего тела, превышающей температуру плавления, с выделением газа и получением механической энергии за счет совершения рабочего хода как в области отрицательных температур, в результате фазового перехода, так и в области положительных температур, при разложении рабочего тела, причем после образования клатратного льда из рабочей камеры отводят балластную воду.
Использование в качестве рабочего тела газонасыщенной воды обусловлено тем, что при замерзании она увеличивает свой объем на 15 20% больше, нежели при кристаллизации обыкновенной воды, в результате чего может быть получена большая механическая энергия. Кроме того время образования и разложения клатратного льда значительно меньше, чем время кристаллизации и расплавления обыкновенного льда. Это позволяет дополнительно повысить эффективность использования предлагаемого способа.
И наконец, если в прототипе в области положительных температур получение механической энергии невозможно, поскольку вода, образованная при расплавлении обыкновенного льда, не расширяется, то в предлагаемом способе это имеет место, в результате выделения большого количества газа (1 см3 клатратного льда выделяет до 300 см3 газа) в процессе разложения клатратного льда при его нагревании.
Удаление балластной воды необходимо для того, чтобы сократить время фазового перехода рабочего тела и чтобы при разложении клатратного льда весь выделяющийся газ участвовал в получении механической энергии, а не растворялась бы часть его в балластной воде. Кроме того, различные примеси (соли и т. п. ), находящиеся в балластной воде, будут удаляться с ее удалением из рабочей камеры, что улучшает свойства клатратного льда.
Таким образом, с помощью предлагаемого способа можно повысить эффективность преобразования тепловой энергии в механическую и расширить температурный диапазон использования этого способа (как в отрицательной, так и в положительной области).
Осуществить указанный способ можно следующим образом.
При комнатной (или любой, но более 10oC) температуре помещают в рабочую камеру 1 (см. чертеж) через вентиль 2, расположенный под поршнем 3 в стенке рабочей камеры, воду, в которой растворен газ, в количестве достаточном для образования клатратного льда. Закрыв вентиль, снижают температуру газонасыщенной воды в зависимости от вида газа до 1 6oC. Температуру внутри рабочей камеры регистрируют с помощью термопары 4 и милливольтметра 5. При указанной температуре в рабочей камере образуется клатратный лед и остается избыточная (балластная) воды. Затем через вентиль 2 удаляют балластную воду, в результате чего в рабочей камере остается только клатратный лед, представляющий собой рабочее тело, которое и используют для получения механической энергии.
Так, при снижении температуры в отрицательную область клатратный лед расширяется и перемещает поршень (рабочий ход), тем самым совершая механическую работу. Если теперь начать повышать температуру рабочего тела, объем клатратного льда уменьшается и поршень будет совершать обратный (холостой) ход. Однако при достижении температуры разложения клатратного льда из него начнет выделяться газ и поршень будет вновь совершать рабочий ход, но уже не при охлаждении, а при нагревании рабочего тела и не в отрицательной, а в положительной области температур.
Таким образом, рабочий ход поршня значительно увеличивается по сравнению с прототипом, а следовательно, возрастают механическая энергия и эффективность способа.
Пример. В рабочую камеру 1 объемом 1,5•10-2 м3 через вентиль 2 при температуре 20oC поместили под поршень 5 л воды насыщенной пропаном. С помощью холодильника снизили температуру внутри камеры до -3oC (зимой для этой цели использовали низкую температуру наружного воздуха). После образования клатратного льда (момент его образования фиксировался по милливольтметру 5) через вентиль 2 удалили балластную воду. Снизили температуру рабочего тела до -12oC (для этой цели использовались либо морозильная камера, либо наружный воздух). При этом объем рабочего тела возрос на 30% и поршень поднялся на 10 см (если бы вместо клатратного использования обыкновенный лед, объемное расширение которого 10% то поршень поднялся бы только на 3 см). При повышении температуры (в нашем примере до 20oC) клатратный лед сначала расплавился и объем рабочего тела уменьшился до первоначального значения (совершился холостой ход), а затем в результате выделения газа поршень вновь поднялся но уже на высоту 40 см, что позволило получить дополнительную механическую энергию.
Преимущества технико-экономических показателей заявляемого способа перед прототипом (базовым объектом) показаны в таблице.
Таким образом, использование заявляемого способа позволяет повысить эффективность и энергоемкость и получить возможность совершения механической работы как при отрицательных так и при положительных температурах.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ РАВНОВЕСНОЙ С ГАЗОВЫМ ГИДРАТОМ ПОРОВОЙ ВОДЫ В ДИСПЕРСНЫХ СРЕДАХ (ВАРИАНТЫ) | 2008 |
|
RU2391650C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ДИОКСИДА СЕРЫ ИЗ ГАЗОВ | 1998 |
|
RU2137707C1 |
НАДДОЛОТНЫЙ ЛУБРИКАТОР | 1993 |
|
RU2066728C1 |
АМАЛЬГАМАТОР ДЛЯ ВЫДЕЛЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ПУЛЬПЫ | 1991 |
|
RU2100460C1 |
ЭЛЕКТРОДНЫЙ КОМПЛЕКТ | 2001 |
|
RU2206640C2 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МОДЕЛЕЙ СВАЙ | 1990 |
|
RU2005851C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЬДОСОДЕРЖАЩЕЙ ПУЛЬПЫ | 2011 |
|
RU2475684C1 |
ЭЛЕКТРОННАЯ СИСТЕМА ЗАЖИГАНИЯ | 1998 |
|
RU2157462C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ НЕСУЩЕЙ СПОСОБНОСТИ МОДЕЛЕЙ СВАЙ | 1990 |
|
RU2005852C1 |
УСТРОЙСТВО ДЛЯ УСТАНОВКИ ВАЛКА ОБЖИМНОГО СТАНА | 1996 |
|
RU2104107C1 |
Использование: в области энергетики. Сущность: за счет использования в качестве рабочего тела предварительно насыщенной газом воды, причем механическая энергия получается как в результате фазового перехода, так и разложения рабочего тела, что позволяет получить механическую энергию и при отрицательных, и при положительных температурах окружающей среды. 2 з.п. ф-лы, 1 табл., 1 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство, 1343097, кл | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, авторское свидетельство, 769068, кл | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
SU, авторское свидетельство, 237770, кл | |||
Печь для сжигания твердых и жидких нечистот | 1920 |
|
SU17A1 |
Авторы
Даты
1997-12-20—Публикация
1995-06-06—Подача