Изобретение относится к лазерной технике, а более конкретно к неодимовым лазерам, генерирующим в области 1,06±0,1 и 1,32±0,1 мкм.
Известен лазер, содержащий резонатор, образованный зеркалами, внутри которого установлен активный элемент, активированный ионами неодима, с лампой накачки и установленная под углом к оптической оси дисперсионная призма, разводящая потоки излучения с разными длинами волн [1]
Недостатком являются трудности в оперативном и точном переключении длины волны генерации, поскольку для этого необходимо каждый раз заново устанавливать под определенным углом выходное зеркало и юстировать всю систему в целом.
Наиболее близким по технической сущности к изобретению является твердотельный двухчастотный лазер, содержащий два резонатора для различных длин волн излучения, активный элемент, активированный ионами неодима, с лампой накачки, перемещающийся из одного резонатора в другой, за счет чего достигается переключение длин волн излучения [2]
Недостатком прототипа являются трудности с длительным сохранением необходимой точности юстировки системы. Кроме того, необходимость точного перемещения громоздкого квантрона, содержащего активный элемент, лампу накачки и соединенного высоковольтными проводами с источником питания и шлангами с системой охлаждения, требует сложного устройства и резко снижает надежность лазера.
Задачей данного изобретения является увеличение ресурса работы лазера в режиме многократных переключений, повышение оперативности переключения длин волн и упрощение конструкции лазера.
Задача решается за счет того, что в твердотельном двухчастотном лазере, содержащем резонатор, образованный зеркалами, внутри которого установлен активный элемент, активированный ионами неодима, с лампой накачки, активный элемент жестко закреплен на оптической оси резонатора. Резонатор образован выходным зеркалом, частично отражающим излучение на обеих частотах, глухим зеркалом, полностью отражающим излучение на одной частоте и полностью пропускающим излучение на второй частоте, которое установлено между активным элементом и глухим зеркалом, полностью отражающим излучение на второй частоте, между глухими зеркалами установлена заслонка.
Заслонка может быть выполнена из любого материала непрозрачного для излучения и неразрушающегося под его воздействием. В случае использования металлической заслонки необходимо учитывать возможность отражения излучения от поверхности металла и с целью вывода этого вредного отраженного излучения располагать заслонку под углом к оптической оси.
На чертеже представлена схема предлагаемого лазера.
Лазер содержит выходное зеркало 1, частично отражающее излучение на обеих частотах, активный элемент 2, активированный ионами неодима, и лампу накачки 3, помещенные в отражатель 4, глухое зеркало 5, полностью отражающее излучение на одной частоте и полностью пропускающее излучение на второй частоте, глухое зеркало 6, полностью отражающее излучение на второй частоте. Между глухими зеркалами установлена заслонка 7.
Кроме того, лазер включает блок питания и управления лампы накачки 8.
Лазер работает следующим образом. Включают систему оптической накачки лазера (блок 8). Заслонка 7 находится в одном из двух положений (открытом или закрытом); если заслонка 7 открыта, то зеркала 1 и 6 образуют резонатор для генерации излучения с λ 1,08 мкм, а зеркала 1 и 5 для генерации излучения с l 1,34 мкм, но превышение коэффициента усиления над потерями больше для излучения l 1,08 мкм, чем для излучения с l 1,34 мкм, поэтому происходит генерация с l 1,08 мкм. Излучение с этой длиной волны без потерь проходит через зеркало 5, полностью отражается от зеркала 6 и частично выходит через зеркало 1. Другая часть излучения, отраженная от зеркала 1, снова проходит через активный элемент 2, принимая участие в процессе генерации.
При закрытой заслонке 7 излучение не достигает зеркала 6, и единственным замкнутым резонатором становится резонатор, образованный зеркалами 1 и 5 для генерации излучения с l 1,34 мкм, которое частично выходит через зеркало 1, а частично отражается, вновь проходит через активный элемент 2 и принимает участие в дальнейшей генерации.
Таким образом, открывая и закрывая заслонку 7, можно обеспечить оперативное переключение длины волны, не меняя оптических составляющих и не нарушая юстировки системы.
Испытания, выполненные с помощью лазера на алюминате иттрия с неодимом, показали бесперебойную работу предлагаемого устройства, в котором зеркало 1 имело коэффициент отражения около 30% при l 1,08 мкм и 45% при l 1,34 мкм.
Коэффициент отражения зеркала 5 был близок к 100% для l 1,34 мкм, а зеркала 6 к 100% для l 1,08 мкм.
В качестве заслонки 7 использовалась пластинка из дюралюминия, расположенная под углом к оптической оси.
Активный элемент имел цилиндрическую форму и размеры 6 х 65 мм.
Достигнутая выходная мощность излучения соответствовала 12 Вт при l 1,34 мкм и 20 Вт при l 1,08 мкм.
Верхняя граница достигнутой мощности лимитировалась лишь возможностями имеющегося блока питания.
Схема лазера по изобретению обеспечивает оперативное переключение режимов работы за время менее 1 с и увеличение ресурса работы лазера за счет исключения сложного механизма точного перемещения громоздкого квантрона.
название | год | авторы | номер документа |
---|---|---|---|
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПЕРЕСТРОЙКОЙ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ | 1996 |
|
RU2101817C1 |
БЕЗОПАСНЫЙ ДЛЯ ГЛАЗ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1994 |
|
RU2069030C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ДВУХЧАСТОТНЫЙ ЛАЗЕР | 2002 |
|
RU2227950C2 |
ОФТАЛЬМОЛОГИЧЕСКАЯ ХИРУРГИЧЕСКАЯ ЛАЗЕРНАЯ УСТАНОВКА | 2001 |
|
RU2209054C1 |
ИМПУЛЬСНЫЙ ДВУХРЕЖИМНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 2013 |
|
RU2548592C2 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ | 2013 |
|
RU2545387C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ НА ВЫНУЖДЕННОМ КОМБИНАЦИОННОМ РАССЕЯНИИ | 1997 |
|
RU2115983C1 |
Лазер с внутрирезонаторным удвоением частоты излучения | 1980 |
|
SU878137A1 |
СПОСОБ ВНУТРИРЕЗОНАТОРНОЙ ПАРАМЕТРИЧЕСКОЙ ГЕНЕРАЦИИ СВЕТА | 2001 |
|
RU2176839C1 |
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1992 |
|
RU2034384C1 |
Изобретение относится к лазерной технике, а более конкретно к неодимовым лазерам, генерирующим в области 1,06±0,1 и 1,32±0,1 мкм. Сущность: предложен твердотельный двухчастотный импульсный лазер, содержащий резонатор, образованный зеркалами, внутри которого установлен активный элемент, активированный ионами неодима с лампой накачки. Активный элемент с лампой накачки жестко закреплен на оптической оси резонатора, резонатор образован выходным зеркалом, частично отражающим излучение на обеих частотах, глухим зеркалом, полностью отражающим излучение на одной частоте и полностью пропускающим излучение на второй частоте, которое установлено между активным элементом и глухим зеркалом, полностью отражающим излучение на второй частоте. Между глухими зеркалами установлена заслонка. 1 ил.
Твердотельный двухчастотный импульсный лазер, содержащий резонатор, образованный зеркалами, внутри которого установлен активный элемент, активированный ионами неодима, с лампой накачки, отличающийся тем, что активный элемент с лампой накачки жестко закреплен на оптической оси резонатора, резонатор образован выходным зеркалом, частично отражающим излучение на обеих частотах, глухим зеркалом, полностью отражающим излучение на одной частоте и полностью пропускающим излучение на второй частоте, которое установлено между активным элементом и глухим зеркалом, полностью отражающим излучение на второй частоте, между глухими зеркалами установлена заслонка.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Ресс Д | |||
Лазеры, усилителя и генераторы | |||
- Академическое издательство Франкфурт - на - Майне, 1966, с | |||
Канальная печь-сушильня | 1920 |
|
SU230A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
PST, заявка, 093/01638, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1998-01-10—Публикация
1996-07-02—Подача