ВЫПУСКНОЕ ОКНО ЭЛЕКТРОННОГО УСКОРИТЕЛЯ Российский патент 1998 года по МПК H05H5/02 H01J33/04 

Описание патента на изобретение RU2101888C1

Изобретение относится к ускорительной технике и может найти применение в радиационных технологиях использующих электронное облучение, таких как дезинсекция зерна, консервация продуктов питания, радиационная химия, включая очистку газов, сшивание полимеров и др.

Известно выпускное окно электронного ускорителя, содержащее фланец с отверстием, закрытым прозрачной для электронов фольгой [Абрамян Е.А. Промышленные ускорители электронов, -М. Энергоатомиздат, 1986, с. 165-172]
Недостатком такого окна является ограниченность тока выпускаемого через него пучка электронов, так, с увеличением диаметра круглого окна приходится увеличивать толщину фольги, что приводит к снижению ее прозрачности и плотности пропускаемого тока. В итоге величина выпускаемого тока не зависит от диаметра окна и в случае алюминиевой фольги составляет ≈10-2А.

Ближайшим техническим решением является выпускное окно электронного ускорителя [см. там же, с. 168] содержащее фланец с отверстием, закрытым прозрачной для электронов фольгой с поддерживающей подложкой. В качестве поддерживающей подложки используют металлические ребра, расположенные на расстоянии l друг от друга. Пучок разрезается ребрами на части, каждая из которых выпускается участком фольги в виде ленточки. Если ширина каждой ленточки l, суммарная длина всех ленточек b, то такое окно пропускает ток в b/l раз больший, чем "элементарное окно" в виде квадрата со стороной l. Ток через такое "элементарное окно" (как и для круглого окна) не зависит от размера l и в случае алюминиевой фольги составляет около 5•10-3А. Таким образом, полный ток окна может быть увеличен до любой необходимой величины.

Недостатком такого выпускного окна являются потери тока пучка на ребрах, составляющие 30-40% его величины.

Техническим результатом изобретения является снижение потерь тока пучка, что повышает КПД.

Технический результат достигается тем, что в выпускном окне электронного ускорителя, содержащем фланец с отверстием, закрытым прозрачной для электронов фольгой с поддерживающей подложкой, поддерживающая подложка выполнена из пироуглеродной ткани.

На чертеже представлена схема выпускного окна.

Окно содержит фланец 1 с отверстием, закрытым поддерживающей подложкой 2, выполненной из пироуглеродной ткани, и фольгой 3. Фольга вакуумно уплотнена на фланец с помощью уплотнителя 4 и разделяет вакуумный объем ускорителя (на чертеже слева от фольги) и атмосферу (справа).

Выпускное окно работает следующим образом.

Электронный пучок падает на окно с вакуумной стороны. При этом максимальная величина тока через окно определяется свойствами материала фольги. Плотность потерь мощности в фольге (1) Pп~ jhzρ, где j плотность тока пучка, h толщина фольги, z заряд ядер материала фольги, ρ - плотность фольги. При этом толщина фольги определяется линейными размерами фольги (диаметром) l и ее удельной прочностью σ:
(2) h~1/σ Плотность мощности, снимаемой с фольги атмосферой, составит
(3) Pсн~λT/h, где λ - теплопроводность фольги, T допустимая рабочая температура, при которой нет заметного снижения механических свойств фольги. Из (1)-(3) определим допустимую величину тока через фольгу: (4) I~Tλσ2/zρ
Если величину k =Τλσ2/zρ для алюминия принять за единицу измерения таких величин, то для применяемых в выпускных окнах титана к=2, бериллия к=2,5. Для пироуглерода к=200 и, соответственно, ток, пропускаемый пироуглеродной пленкой (тканью) составит 2 А. Учет теплового излучения приведет к увеличению пропускаемого тока. В выпускном окне пироуглеродная ткань применяется как прозрачная для электронов поддерживающая вакуумплотную тонкую фольгу подложка. Толщина фольги, определенная из (2), много меньше той, которую позволяют технологические возможности, и реально она составляет 5 мкм для титана и 10 мкм для алюминия. Возможно напыление на ткань вакуумплотного слоя металла толщиной около 1 мкм.

Рассмотрим пример выполнения выпускного окна для ускорителя с энергией электронов 1 МВ и током 0,5 А. Существуют программы расчета прохождения электронов через вещество, но проще воспользоваться табличными данными, например, из [Баранов В. Ф. Дозиметрия электронного излучения. -М. Атомиздат, 1974] при массовой толщине пироуглеродной ткани 0,03 г/см2 и алюминиевой фольги 2,7•10-3 г/см2 потери энергии пучка составят около 1% Диаметр окна составит 6 см.

Таким образом, изобретение позволяет выпускать большие величины токов (единицы ампер) с малыми потерями энергии в выпускном окне, что позволяет повысить КПД работы выпускного окна.

Похожие патенты RU2101888C1

название год авторы номер документа
ИСТОЧНИК РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 1993
  • Бабыкин В.М.
  • Голованов Ю.П.
  • Долгачев Г.И.
  • Закатов Л.П.
  • Ковалев Ю.И.
  • Ушаков А.Г.
RU2046558C1
МИШЕНЬ ИМПУЛЬСНОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ 2006
  • Мордасов Николай Григорьевич
  • Иващенко Дмитрий Михайлович
  • Членов Александр Михайлович
RU2310296C1
ВЫПУСКНОЕ ОКНО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ 2007
  • Коваль Николай Николаевич
  • Щанин Петр Максимович
  • Лопатин Илья Викторович
RU2354086C1
ШИРОКОАПЕРТУРНЫЙ УСКОРИТЕЛЬ С ПЛАНАРНОЙ ЭЛЕКТРОННО-ОПТИЧЕСКОЙ СИСТЕМОЙ 2016
  • Казаченко Николай Ильич
  • Комаров Олег Викторович
  • Косогоров Сергей Леонидович
  • Павлюченков Владимир Федорович
  • Успенский Николай Александрович
  • Шведюк Валерий Яковлевич
RU2648241C2
Радиационный дезинсектор зерна 1978
  • Будкер Г.И.
  • Закладной Г.А.
  • Крайнов Г.С.
  • Кршеминский В.С.
  • Куксанов Н.К.
  • Меньшенин А.И.
  • Перцовский Е.С.
  • Савченко С.М.
  • Салимов Р.А.
  • Черепков В.Г.
SU679086A1
Выпускное окно ускорителя электронов 1980
  • Аброян М.А.
  • Сусаров А.Д.
  • Токарев Г.М.
  • Федотов М.Т.
SU852148A1
ВАКУУМНЫЙ ДИОД С БЕГУЩЕЙ ВОЛНОЙ (ВАРИАНТЫ) 1995
  • Шпак В.Г.
  • Шунайлов С.А.
  • Яландин М.И.
RU2079985C1
ГЕНЕРАТОР ИМПУЛЬСОВ НАПРЯЖЕНИЯ 1994
  • Долгачев Г.И.
  • Беленький Г.С.
RU2090020C1
Выпускное окно ускорителя электронов 1979
  • Дмитриев С.Д.
  • Иванов А.С.
  • Никишкин В.И.
  • Свиньин М.П.
  • Федотов М.Т.
SU786839A1
УСТРОЙСТВО ДЛЯ ОБЛУЧЕНИЯ ЖИДКОСТИ 1984
  • Краюшкин В.В.
  • Ларичев А.В.
  • Махалов Д.Н.
  • Подзорова Е.А.
SU1156530A1

Реферат патента 1998 года ВЫПУСКНОЕ ОКНО ЭЛЕКТРОННОГО УСКОРИТЕЛЯ

Использование: в ускорительной технике и может найти применение в радиационных технологиях, использующих электронное облучение, таких как дезинсекция зерна, консервация продуктов питания, радиационная химия, включая очистку газов, сшивание полимеров и др. Сущность изобретения: в выпускном окне электронного ускорителя, содержащем фланец с отверстием, закрытым прозрачной для электронов фольгой с поддерживающей подложкой, последняя выполнена из пироуглеродной ткани. Изобретение позволяет выпускать большие величины токов (единицы ампер) с малыми потерями энергии в выпускном окне, что повышает КПД работы выпускного окна. 1 ил.

Формула изобретения RU 2 101 888 C1

Выпускное окно электронного ускорителя, содержащее фланец с отверстием, закрытым прозрачной для электронов фольгой с поддерживающей подложкой, отличающееся тем, что поддерживающая подложка выполнена из пироуглеродной ткани.

Документы, цитированные в отчете о поиске Патент 1998 года RU2101888C1

SU, авторское свидетельство, 777755, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Абрамян Е.А
Промышленные ускорители электронов
- М.: Энергоатомиздат, 1986, с.168 и 169, рис.8.2.

RU 2 101 888 C1

Авторы

Долгачев Георгий Иванович

Нитишинский Михаил Сергеевич

Даты

1998-01-10Публикация

1996-09-27Подача