Изобретение относится к микроэлектронике, а именно к вертикальным полевым транзисторам с р-n переходом.
Известен полевой транзистор с р-n переходом, содержащий подложку с электродом стока, эпитаксиальный слой, электроды затвора и исток, сформированные в эпитаксиальном слое затвор, исток и канал. Транзистор имеет триодные характеристики. Недостатками этого транзистора являются малая крутизна, низкая предельная частота. Желательно увеличение максимального тока транзистора.
Известен полевой транзистор с р-n переходом, содержащий затвор и сток, имплантацией примесей. Недостатками этого транзистора являются малая крутизна, предельная частота и максимальный ток, а также большая зависимость параметров от точности литографии.
Известен полупроводниковый прибор, который может работать как полевой транзистор с р-n переходом или как биполярный транзистор с обедненной базой. Он имеет те же недостатки, что связано с небольшой концентрацией примесей в канале, большой толщиной канала, большой длиной канала и отсутствием градиента концентраций примеси поперек канала.
Наиболее близким устройством к предлагаемому является полевой транзистор с р-n переходом, содержащий подложку первого типа проводимости с электродом стока, затвор и дополнительный затвор, сформированные с помощью имплантации ионов индия в окна в слое окисла кремния, исток, сформированный диффузией фосфора в окно в слое окисла кремния, и расположенный над дополнительным затвором, канал, электроды истока и затвора. Недостатками данного транзистора также являются недостаточные крутизна, предельная частота и максимальный ток, а также большая зависимость параметров от точности литографии.
Известен способ изготовления горизонтального р-n-р транзистора с самосовмещенным эмиттером, включающий диффузию донорной и акцепторной примесей в окно маски. Распределение примеси в р-n-р транзисторе в горизонтальном сечении аналогично распределению примеси в некоторых вариантах предлагаемого полевого транзистора. Недостатками способа является то, что он не позволяет провести дальнейшее существенное увеличение градиента концентрации примеси, уменьшение толщины базы, увеличение предельной частоты и уменьшение площади структуры по сравнению с приведенными в работе параметрами (при заданной разрешающей способности литографии).
Наиболее близкий к предлагаемому способ изготовления полевого транзистора с р-n переходом включает формирование слоя окисла кремния, образование затвора и дополнительного затвора с помощью имплантации ионов индия, маскирование затвора, формирование истока, канала, и дополнительного затвора с помощью диффузии фосфора, металлизацию. Недостатками данного способа является то, что он не позволяет провести дальнейшее существенное повышение концентрации примеси в канале, уменьшение толщины и длины канала, увеличение крутизны, предельной частоты и максимального тока транзистора, а также большая зависимость параметров транзистора от точности литографии.
Примечание. Так как данный патент включает несколько вариантов транзистора и способа изготовления транзистора, описан прототип транзистора и способа изготовления для относительно "сложного" транзистора с дополнительным затвором, а в формуле изобретения описаны не все варианты.
Результатом данного технического решения является возможность изготовить транзистор, имеющий высокую концентрацию примеси в канале, малые длину и толщину канала, высокие крутизну, предельную частоту и максимальный ток, а также уменьшить зависимость параметров транзистора от точности литографии и количество технологических операций, в частности, литографий.
Технический результат достигается тем, что в полевом транзисторе с р-n переходом, содержащем подложку первого типа проводимости с электродом стока, электроды истока и затвора, изоляцию, сформированные в кремнии исток, канал и затвор, причем затвор сформирован имплантацией примеси второго типа проводимости в окно маски, на подложке расположен эпитаксиальный слой, легированный примесью первого типа проводимости, электрод истока сформирован анизотропным травлением проводящего слоя, расположенного поверх эпитаксиального слоя, на боковых поверхностях электрода истока сформирована изоляция.
Технический результат достигается тем, что эпитаксиальный слой легирован примесями первого и второго типов проводимости, под истоком транзистора расположен дополнительный затвор, а канал транзистора сформирован имплантацией примеси первого типа проводимости в то же окно маски и боковой диффузией.
Технический результат достигается тем, что в способе изготовления полевого транзистора с р-n переходом, включающем формирование маски поверх монокристалического кремния, формирование затвора имплантацией примеси второго типа проводимости в окно маски, формирование истока и канала, металлизацию, на подложку наращивают эпитаксиальный слой, легированный примесью первого типа проводимости, поверх эпитаксиального слоя наращивают проводящий слой, состоящий из одного или двух различных материалов, формируют электрод истока анизотропным травлением слоя из проводящего материала, наносят изолирующий окисел, травят изолирующий окисел, оставляя его на боковых поверхностях электрода истока, а исток формируют термообработкой.
Технический результат достигается тем, что канал транзистора формируют с помощью имплантации примеси первого типа проводимости в то же окно маски и боковой диффузии.
В основе предлагаемого способа изготовление транзистора лежат следующие факторы:
электрод истока транзистора служит маской для формирования транзистора и может являться источником примеси для формирования истока транзистора;
имплантированная в аморфную подложку через окно маски с вертикальными краями легирующая примесь занимает в нулевом приближении одинаковую область при одинаковой средней глубине независимо от вида имплантируемых ионов;
область, занимаемая каждой из примесей, может быть изменена за счет разориентации подложки, каналирования, совместной диффузии.
В первом приближении следует учитывать отклонения от кривой Гаусса, различные для легких и тяжелых ионов, различия нормальных и поперечных дисперсий, взаимозависимости скорости диффузии при совместной диффузии донорной и акцепторной примесей, изменение скорости диффузии при быстром термическом отжиге. Имплантацией примесей при различных энергиях и дозах можно скорректировать форму областей затвора и канала и оптимизировать параметры транзисторов.
Для изготовления полевого транзистора с n-каналом используют, например, в качестве легирующей примеси индий или бор для затвора, фосфор или мышьяк для канала. Для изготовления р-канального транзистора используют, например, в качестве легирующей примеси мышьяк или фосфор для затвора, бор или алюминий для канала. Параметры транзистора в значительной степени зависят от количества примеси в канале, особенно на границе со слаболегированной областью стока. Параметры транзистора могут быть улучшены, если при формировании затвора использовать каналирование. Концентрацию примеси в дополнительном затворе выбирают значительно меньшей концентрации примеси в канале, так что она слабо влияет на количество примеси в канале и пороговое напряжение транзистора. Влияние потенциала дополнительного затвора на ток, протекающей по каналу, невелико. Предлагаемый способ позволяет изготовить транзистор с толщиной канала около 0,1 мкм. Пороговое напряжение транзистора может быть сделано равным, например, 0,6 В. В этом случае термостабильная точка находится вблизи нуля. Температурный коэффициент порогового напряжения около 2 мВ/град. Для улучшения параметров транзистора следует уменьшить сопротивление проводящего слоя за счет использования тугоплавких металлов, несмотря на некоторое усложнение технологии. Для формирования электродов транзистора могут использоваться, например, легированный поликремний, вольфрам, силицид вольфрама, борид иттрия, нитрид вольфрама, борид иттрия-молибден (Между боридом иттрия и молибденом следует разместить слой окисла кремния со средней толщиной 2 нм. При этом ток будет протекать в тех местах, где толщина слоя окисла кремния 1 нм и меньше).
Сопоставительный анализ полевого транзистора с р-n переходом с прототипом показывает, что он отличается тем, что на подложке расположен эпитаксиальный слой, легированный примесью первого типа проводимости, электрод истока сформирован анизотропным травлением проводящего слоя, расположенного поверх эпитаксиального слоя, на боковых поверхностях электрода истока сформирована изоляция.
Сопоставительный анализ показывает, что полевой транзистор с р-n переходом отличается тем, что эпитаксильный слой легирован примесями первого и второго типов проводимости, под истоком транзистора расположен дополнительный затвор, а канал транзистора сформирован имплантацией примеси первого типа проводимости в то же окно маски и боковой диффузией.
Сопоставительный анализ способа изготовления полевого транзистора с р-n переходом с прототипом показывает, что он отличается тем, что на подложку наращивают эпитаксиальный слой, легированный примесью первого типа проводимости, поверх эпитаксиального слоя наращивают проводящий слой, состоящий из одного или двух различных материалов, формируют электрод истока анизатропным травлением слоя из проводящего материала, наносят изолирующий окисел, травят изолирующий окисел, оставляя его на боковых поверхностях электрода истока, а исток формируют термообработкой.
Сопоставительный анализ способа изготовления полевого транзистора с р-n переходом с прототипом показывает, что он отличается тем, что канал транзистора формируют с помощью имплантации примеси первого типа проводимости в то же окно маски и боковой диффузии.
Таким образом, заявленные полевой транзистор с р-n переходом и способ его изготовления (варианты) соответствуют критерию "новизна".
Не подтверждена известность влияния отличительных признаков на технический результат, что подтверждает критерий "изобретательский уровень".
В материалах заявки указано назначение изобретения, указаны средства и методы для его осуществления, возможна реализация назначения, что говорит о промышленной применимости.
На фигуре 1 представлена структура полевого транзистора с р-n переходом; на фигуре 2 топология транзистора с электродами гребенчатой формы; на фигуре 3 топология "многозатворного" транзистора.
Полевой транзистор с р-n переходом содержит подложку 1 с электродом стока 2, эпитаксиальный слой 3 (слаболегированная область стока) дополнительный затвор 4, поликремниевую часть электрода истока 5, затвор 6, канал 7, исток 8, изолирующий окисел 9, силицидную часть электрода истока 1, электрод затвора 11.
12 месторасположение вывода истока транзистора с гребенчатыми электродами.
13 месторасположение вывода затвора транзистора с гребенчатыми электродами.
14 затвор "многозатворного" транзистора.
15 места расположения выводов истока "многозатворного" транзистора.
n канальный полевой транзистор с р-n переходом может быть сформирован, например, следующим образом: в качестве подложки используется монокристаллический кремний ЭКЭС-0,01, легированный сурьмой с удельным сопротивлением 0,01 Ом•см. Проводится "собственное геттерирование", для чего проводится отжиг при температуре 1050oC в атмосфере азота, а затем при температуре 800oC. На поверхность наращивается эпитаксиальный слой 3 n-типа разложением силана при температуре 1000oC. Скорость роста 0,7 мкм/мин. Концентрация примесей 1016 см-3. Легирующий газ фосфин PH3. Толщина слоя 4 мкм. Эпитаксиальный слой легируется имплантацией индия для образования р-слоя с концентрацией порядка 1017 см-3 с энергией 1,2 МэВ 700 КэВ дозой 1013 см-2 и 5•1012 см-2 соответственно. На поверхность эпитаксиального слоя наращивается слой поликристаллического кремния 5, легированного фосфором при температуре 650oC.
Концентрация примеси 1020 см-3. Толщина слоя 0,8 мкм. С помощью фотолитографии формируется электрод истока 5 транзистора гребенчатой формы с помощью сухого анизотропного травления в плазме С2F6- CL2. Проводится предаморфизация имплантацией индия с энергией 150 кэв. Доза 1014 см-2. Формируется затвор 6 имплантацией индия с энергией 1,0 МэВ, 600 кэв, 350 кэв. Концентрация примеси в центрах областей 3•1019см-3. Имплантируется фосфор с энергией 200 кэв, 330 кэв. Концентрация примеси в центрах областей 1019см-3 и 5•1018 см-3. соответственно. На поверхность наращивается слой окисла разложением тетраэтоксисилана при температуре 750oC. Толщина слоя 0,3 мкм. Формирует канал 7 и исток 8 при температуре 1050oC. Время обработки около 30 мин. С помощью сухого анизатропного травления в плазме CHF3 формируется изолирующий окисел 9 на боковой поверхности электрода истока. Наращивается слой вольфрама с помощью разложения WF6 в среде H2 при температуре 350oC для формирования электродов истока 10 и затвора 11.
Примечание. Введя небольшие изменения в технологию, можно изготовить "многозатворный" транзистор, параметры которого лучше, чем параметры транзистора с гребенчатыми электродами.
Предлагаемый транзистор может быть изготовлен как на современном, так и на относительно устаревшем, широкораспространенном оборудовании.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ БИКМОП ПРИБОРА | 1998 |
|
RU2141148C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ АВТОМАСШТАБИРУЕМОЙ БИКМОП СТРУКТУРЫ | 2003 |
|
RU2234165C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БИКМОП СТРУКТУРЫ | 1998 |
|
RU2141149C1 |
БИКМОП-ПРИБОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1996 |
|
RU2106719C1 |
Способ изготовления силового полупроводникового транзистора | 2016 |
|
RU2623845C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПОЛЕВЫХ СТРУКТУР С УПРАВЛЯЮЩИМ P-N-ПЕРЕХОДОМ И ВЕРТИКАЛЬНЫМ КАНАЛОМ | 1991 |
|
SU1797413A1 |
БиКМОП-ПРИБОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2003 |
|
RU2282268C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ КМОП ТРАНЗИСТОРОВ С ПРИПОДНЯТЫМИ ЭЛЕКТРОДАМИ | 2006 |
|
RU2329566C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА | 2010 |
|
RU2431905C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БСИТ-ТРАНЗИСТОРА С ОХРАННЫМИ КОЛЬЦАМИ | 2013 |
|
RU2524145C1 |
Использование: микроэлектроника, вертикальные полевые транзисторы с р-п переходом и технология их изготовления. Сущность изобретения: в полевом транзисторе с р-n переходом эпитаксиальный слой лигирован примесям первого или первого и второго типов проводимости. Электрод истока сформирован анизотропным травлением слоя, расположенного поверх эпитаксиального слоя и выполненного из проводящего материала, содержащего примесь первого типа проводимости. Затвор сформирован имплантацией примеси второго типа проводимости в окно электрода истока, канал сформирован с помощью имплантации примеси первого типа проводимости в то же окно и боковой диффузии. Изоляция сформирована на боковых поверхностях электрода истока. 2 с. и 2 з.п. ф-лы, 3 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Блихер А | |||
Физика силовых биполярных и полевых транзисторов | |||
- Л.: Энергоатомиздат, 1986, с.174 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Кремлев В.Я | |||
и др | |||
Взаимосвязь конструктивных и технологических параметров нормальнозакрытого полевого транзистора с управляющим р-n переходом | |||
Электронная техника | |||
Сер | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Микроэлектроника, 1986, вып.2 | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
J.M.Stork at all | |||
Small geometry depleted base bipolar transistor (BSIT) VLSI devices JEEE Transactions on electron devices | |||
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм | 1919 |
|
SU28A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
JP, заявка, 55-10152, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Безбородков Б.А | |||
и др | |||
Экспериментальное исследование горизонтальных p-n-p транзисторов с самосовмещенным эмиттером | |||
Электронная техника | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Микроэлектроника, 1981, вып.2, с.3. |
Авторы
Даты
1998-01-20—Публикация
1992-04-15—Подача