СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА Российский патент 1998 года по МПК E21B37/00 E21B37/06 

Описание патента на изобретение RU2103477C1

Изобретение относится к нефтяной промышленности и может быть использовано для восстановления и повышения продуктивности нефтяных скважин, призабойная зона которых заблокирована асфальтосмолопарафиновыми отложениями (АСПО).

Известен ряд способов обработки призабойной зоны скважины путем закачки органического растворителя, продавки его в пласт, выдержки в пласте и удаления продуктов реакции из пласта при запуске скважины в работу. Например, способ, в котором в качестве растворителя используют смесь ракетного топлива и хинолина [1].

Описанный растворитель при его выдержке в призабойной зоне скважины в течение суток обеспечивает повышение дебита скважины с 0,1 до 3,8 т/сут.

Такое увеличение дебита скважины не может быть сохранено в данном случае на длительный период из-за того, что указанный растворитель не препятствует отложению АСПО в процессе дальнейшей эксплуатации скважины, так как существенно не влияет на изменение свойств поверхности пор и каналов пласта.

Известен ряд способов, в которых обработка призабойной зоны растворителем комбинируется с обработкой поверхностно-активными веществами (ПАВ) [2] или с кислотной обработкой [3].

Использование в указанных способах углеводородных растворителей, таких как гексан, бензол, углеводородный конденсат, являющихся растворителями АСПО, тем не менее также не может обеспечить стабильность дебита скважины более чем на несколько месяцев. Такие растворители на некоторое время придают стенкам пор и каналов в пласте водоотталкивающие свойства, что не препятствует повторному возобновлению блокады АСПО во времени.

Наиболее близким к изобретению является способ обработки призабойной зоны пласта, включающий закачивание в нее эмульсии, содержащей растворитель, выбранный из группы, включающей галогенизированные углеводороды и высокоароматические углеводороды, некислотную водную жидкость, содержащую хлористый натрий и хлористый калий, и ПАВ, и выдерживание его в зоне [4].

Однако указанный способ не обеспечивает стабильной работы скважины на длительный период.

Задача изобретения - создание способа обработки призабойной зоны пласта, обеспечивающего стабильность продуктивности скважины на длительный период времени за счет препятствования возобновлению блокады АСПО.

Задача решается тем, что в способе обработки призабойной зоны пласта, включающем закачивание в нее растворителя и выдерживание его в зоне, используют растворитель, выбранный из группы: хлор- и/или фторуглеводороды метанового, этанового, пентанового ряда, и дополнительно проводят кислотную обработку раствором сульфаминовой кислоты в пластовой воде концентрацией, мас. %: сульфаминовая кислота 14-18; пластовая вода Остальное до закачивания растворителя, концентрацией, мас.%: сульфаминовая кислота 7-9; пластовая вода Остальное после закачивания растворителя.

Воздействие используемого растворителя на поверхность пор и каналов призабойной зоны заключается в их лиофобизации, то есть придании водонефтеотталкивающих свойств поверхности за счет взаимодействия с растворителем. В качестве жидких галогенуглеводородов используют, например, трихлорфторметан (CCl3F), трифтортрихлорэтан (F2ClC-CCl2F), фтордихлорэтан (FCl2C-CН3), дигидродекафторпентан (С5Н2F10). Эффективность растворителей для удаления АСПО в призабойном пласте исследовали на модельных образцах кернов, заблокированных асфальтосмолистыми и парафиновыми веществами. Моделирование пласта и внутрипластовых процессов, протекающих в призабойной зоне при работе и обработке растворителями, проводилось на основе параметров подобия пласта, включающих как геометрические, так и физико-химические и фильтрационно-емкостные критерии.

Таким образом, для определения влияния растворителей на устранение блокады из асфальто-смолистых и парафиновых веществ были выбраны следующие модельные условия: пластовая температура, 40,5oС; длина модели пласта, 1 4,0+5,5 см; пористость породы, m 0,12 + 0,25; проницаемость породы, К 0,015 + 0,25 мкм2; скорость фильтрации воды, нефти на модели пласта, Wм 0,01 + 0,50 см/с; скорость фильтрации растворителя на модели пласта, Wм 0,05 + 0,5 см/с.

В лабораторных условиях использовали линейные модели пласта диаметром d = 30,0 мм, площадью поперечного сечения F = 7,065 см2 и длиной lм = 4,0 + 5,0 см, представленные естественными образцами породы - коллектора (керновым материалом). Образец подвергался насыщению пластовой водой и обезвоженной нефтью для определения его водо- и нефтепроницаемости. Исследования проводились на образцах различной водои нефтепроницаемости. Формирование блокады осуществлялось высоковязкой парафинистой нефтью.

Результаты исследований сведены в таблицу.

В промысловых условиях испытывали влияние способа обработки на скважинах глубиной 1200 м и 1700 м на пластах осадочных пород и известняков. Время выдержки растворителя варьировалось в зависимости от видов предыдущих обработок зоны и увеличивалось в случае применения полимерных ПАВ.

Пример 1. Малодебитная скважина (2 т/сут) в осадочных породах глубиной 1200 м была обработана 0,6 м3 трихлорфторметана в октябре 1993 и выдержана в течение суток. В результате обработки дебит скважины увеличился до 3,5 т/сут. Скважина работает и в настоящее время без снижения дебита.

Пример 2. Малодебитная скважина в осадочных породах (4,5 т/сут) глубиной 1200 м в марте 1994 была обработана 14%-ным раствором САК (то есть раствором, содержащим 14% сульфаминовой кислоты и 86% пластовой воды), затем 0,8 м3 трифтортрихлорэтана, вновь 7%-ный раствором САК, то есть раствором, содержащим 7% сульфаминовой кислоты и 93% пластовой воды. После выдержки в течение 1 сут дебит скважины повысился до 12 т/сут. Скважина работает и в настоящее время без снижения дебита.

Пример 3. Скважина глубиной 1700 м в известковой породе с дебитом 4,0 т/сут в июле 1994 была обработана 18%-ным раствором САК, то есть раствором, содержащим 18% сульфаминовой кислоты и 82%-ным пластовой воды, затем 0,4 м3 трифтордихлорэтана, затем снова 9%-ным раствором САК, то есть раствором, содержащим 9% сульфаминовой кислоты и 91% пластовой воды, в пластовой воде и выдержана в течение 2 сут. Дебит скважины увеличился до 8,3 т/сут и остается таким в настоящее время.

Кроме описанных предлагаемым способом в период 1993-1994 было обработано еще 11 скважин, дебит которых увеличился и стабильно сохраняется в настоящее время. Обработка призабойных зон только растворителем позволяет повысить дебит малодебитной скважины в 2-5 раз и стабилизировать его во времени, в то время как комбинирование такое обработки с обработкой растворами САК позволяет повысить продуктивность малодебитной скважины в 12 раз.

Похожие патенты RU2103477C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2003
  • Аюян Г.А.
  • Журавлёв С.Р.
RU2232879C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА, НАСЫЩЕННОГО УГЛЕВОДОРОДАМИ С ОСТАТОЧНОЙ ВЫСОКОМИНЕРАЛИЗОВАННОЙ ПОРОВОЙ ВОДОЙ 2020
  • Рябков Иван Иванович
  • Киселев Константин Владимирович
RU2757456C1
Способ обработки скважин при добыче газа из низкотемпературных, низкопроницаемых и заглинизированных пластов 2020
  • Хлебников Вадим Николаевич
  • Винокуров Владимир Арнольдович
  • Зобов Павел Михайлович
  • Антонов Сергей Владимирович
  • Мишин Александр Сергеевич
RU2764512C1
СПОСОБ ОБРАБОТКИ ПЛАСТА 2009
  • Малкин Александр Игоревич
  • Пименов Юрий Георгиевич
  • Константинов Сергей Владимирович
RU2401381C1
СПОСОБ ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ СКВАЖИН 2001
  • Марьин В.И.
  • Косенко С.И.
  • Акчурин В.А.
  • Демахин А.Г.
  • Наливайко А.И.
  • Капируля Владимир Михайлович
  • Севостьянов В.П.
RU2188933C1
Способ динамической матричной кислотной обработки карбонатного пласта 2020
  • Хусаинов Руслан Фаргатович
  • Абусалимов Эдуард Марсович
  • Лутфуллин Азат Абузарович
  • Каримов Ильдар Сиринович
RU2750806C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ НЕФТЯНОГО ПЛАСТА 1997
  • Шахвердиев Азизага Ханбаба Оглы
  • Панахов Гейлани Минхадж Оглы
  • Сулейманов Багир Алекпер Оглы
  • Аббасов Эльдар Мехти Оглы
  • Ибрагимов Р.Г.(Ru)
  • Чукчеев О.А.(Ru)
  • Санамова С.Р.(Ru)
RU2114291C1
СПОСОБ КОМПЛЕКСНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2004
  • Марданов М.Ш.
  • Вафин Р.В.
  • Гимаев И.М.
  • Егоров А.Ф.
  • Лыков В.И.
  • Зарипов М.С.
RU2261986C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНЫХ ЗОН ДОБЫВАЮЩИХ СКВАЖИН 2008
  • Гусаков Виктор Николаевич
  • Семеновых Алексей Николаевич
RU2373385C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА 1997
  • Новомлинский Иван Алексеевич
  • Титорева Анна Петровна
RU2117755C1

Иллюстрации к изобретению RU 2 103 477 C1

Реферат патента 1998 года СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА

Изобретение относится к нефтяной промышленности и может быть использовано для восстановления и повышения продуктивности нефтяных скважин, призабойная зона которых заблокирована асфальтосмолопарафиновыми отложениями. Предлагаемый способ обработки призабойной зоны пласта путем закачивания в нее растворителя, выбранного из группы: хлор- и/или фторуглеводороды метанового, этанового, пентанового ряда, и выдерживание его в зоне, предусматривает дополнительную кислотную обработку раствором сульфаминовой кислоты в пластовой воде концентрацией, мас.%: сульфаминовая кислота 14-18, пластовая вода - остальное до закачивания растворителя, и концентрацией, мас.%: сульфаминовая кислота 7-9; пластовая вода - остальное после закачивания растворителя. Способ обеспечивает стабильное увеличение производительности малодебитных скважин в 10-12 раз и стабилизирует ее в течение длительного времени (2-3 года и более). 1 табл.

Формула изобретения RU 2 103 477 C1

Способ обработки призабойной зоны пласта, включающий закачивание в нее растворителя и выдерживание его в зоне, отличающийся тем, что используют растворитель, выбранный из группы: хлор- и/или фторуглеводороды метанового, этанового, пентанового ряда, и дополнительно проводят кислотную обработку раствором сульфаминовой кислоты в пластовой воде концентрацией, мас.

Сульфаминовая кислота 14 18
Пластовая вода Остальное
до закачивания растворителя и концентрацией, мас.

Сульфаминовая кислота 7 9
Пластовая вода Остальное
после закачивания растворителя.

Документы, цитированные в отчете о поиске Патент 1998 года RU2103477C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
RU, патент, 2030571, кл
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
GB, заявка N 2230545, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
SU, авторское свидетельство, N 1728479, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
US, патент, 4775489, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 103 477 C1

Авторы

Кононенко Петр Иванович[Ua]

Богуслаев Вячеслав Александрович[Ua]

Квитчук Ким Кириллович[Ru]

Макаров Олег Абрамович[Ua]

Даты

1998-01-27Публикация

1996-12-27Подача