Предлагаемое изобретение относится к области лазерной технологии и может быть использовано при дезактивации металлических конструкции и трубопроводов АЭС при снятии их с эксплуатации.
Известен способ очистки поверхности металла [1].
Однако этот способ не позволяет снимать оксидные пленки о металлических поверхностей. Именно в таких пленках накапливаются радионуклиды в отложениях на внутренних поверхностях оборудования АЭС.
Известный способ очистки обеспечивает режим плавления, а не испарения, что не приводит к устранению радиоактивных оксидных пленок, и не обеспечивает тем самым снижение уровня радиационной активности.
Известен также электрохимический способ дезактивации углеродистых сталей [2].
Однако этот способ, во-первых, приводит к накоплению больших объемов радиоактивном, химически агрессивной жидкости, требующей хранения и последующей дезактивации, что в свою очередь представляет сложную и дорогостоящую проблему, во-вторых, не позволяет производить дезактивацию эастойных полостей, имеющихся в реакторных установках.
Наиболее близким по технической сущности (прототипом) является способ очистки поверхности материалов, включающий подачу лазерного излучения на обрабатываемую поверхность изделия в нейтральной газовой среде с давлением от 10 до 40 атм. [3].
Однако этот способ, хотя и не приводит к образованию окислов на металлических поверхностях, тем не менее требует специального оборудования и не удаляет радиационные оксидные пленки с поверхностей и может сопровождаться деструкцией поверхностного слоя на большой глубине (до 200-300 мкм).
Достигаемым техническим результатом предлагаемого изобретения является дистанционная дезактивация от радиоактивных отложений металлических поверхностей путем удаления с них радиоактивных оксидных пленок без деструкции обрабатываемого материала.
Технический результат достигается тем, что в известном способе очистки поверхности материалов, включающем подачу лазерного излучения на обрабатываемую поверхность, лазерное излучение выбирают импульсно- периодического режима с модуляцией добротности резонатора, обеспечивающего плотность мощности на обрабатываемой поверхности, достаточную для возникновения на поверхности процессов испарения и абляции наиболее тугоплавких соединений металлов, входящих в состав оксидной пленки, при этом удаление продуктов испарения и абляции с обрабатываемой поверхности производят потоком газа или смесью газов, направление движения которого совпадает с направлением очистки поверхности материала лазерным излучением.
На фиг. 1 показана блок-схема экспериментальной установки, реализующей предложенный способ, где 1 - задающий генератор, 2 - согласующий телескоп, 3 - усилитель (квантрон), 4 - линза, 5 - блок наведения на обрабатываемую поверхность, 6 - обрабатываемая поверхность материала; на фиг. 2 представлена схема экспериментальной системы поглощения радиоактивных аэрозолей, удаляемых смесью газов.
Механизм предложенного способа очистки поверхности материалов заключается в следующем.
Задающий генератор 1, представляющий из себя серийный твердотельный лазер, работающий в импульсно-периодическом режиме с модуляцией добротности резонатора, излучает лазерный пучок с однородным распределением интенсивности по сечению. Это излучение проходит через согласующий телескоп 2 и поступает на усилительную линейку 3. Последняя представляет из себя типовые серийные квантроны 3 типа К-301В. Количество квантронов определяется требуемым уровнем плотности мощности излучения на поверхности металлического образца, которая в свою очередь зависит от максимальной температуры испарения наиболее тугоплавких соединений металлов, входящих в состав оксидной пленки. В результате воздействия лазерного излучения на металлический образец 6 на его поверхности возникают процессы испарения и абляции радиоактивной оксидной пленки. С целью предотвращения повторного осаждения удаленных продуктов коррозии на обрабатываемую поверхность, образец обдувается потоком газа, направление движения которого совпадает с направлением очистки. Для обеспечения радиационной безопасности и сбора для последующею утилизации радионуклидов, этот поток направляется в систему сорбции на фильтрах (фиг. 2).
В процессе исследований эффекта взаимодействия лазерного излучения с поверхностью различных металлов изменились: длительность импульсов; длина волны излучения; частота следования импульсов; диаметр области взаимодействия пучка; скорость движения пучка относительно обрабатываемой поверхности.
Предложенный способ позволит при снятии АЭС или отдельного оборудования с эксплуатации улучшить экологический фон среды, в которой находится очищаемая поверхность; обеспечить дезактивацию застойных зон реакторных конструкций, недоступных для обработки известными способами; достигнуть высокой степени дезактивации вплоть до естественного радиационного фона и использовать очищенный металл в промышленности.
Некоторые результаты испытаний предложенного способа представлены в таблице.
В качестве образцов 1 и 2 были взяты образцы стали марки 08Х18Н10Т с реальной пленкой радиоактивных продуктов коррозии - верхняя часть стояка канала РБМК Игналинской АЭС.
Данные таблицы показывают, что предлагаемый способ очистки (дезактивации) поверхности материалов сравнимы с лучшими результатами, получаемыми при химической дезактивации.
Помимо очистки поверхности материалов от радиационной оксидной пленки, реализация предлагаемого способа позволяет осуществить:
- возможность дистанционной (до нескольких метров) дезактивации;
- возможность дистанционной резки снятых о эксплуатации металлоконструкций с предварительной их дезактивацией.
Источники информации
1. Патент Франции N 2403860 кл. B 23 K 7/06, 1981 г.
2. Авт.св. СССР N 650360, 1977 г.
3. Авт. св. СССР N 1127775, B 28 D 1/00, В 23 К 7/06 (прототип).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОВЕРХНОСТНОЙ ЛАЗЕРНОЙ ОБРАБОТКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2445175C1 |
УСТРОЙСТВО ОЧИСТКИ ПОВЕРХНОСТИ МАТЕРИАЛА ОТ ОКСИДНОЙ ПЛЕНКИ | 1997 |
|
RU2112078C1 |
СПОСОБ РЕГЕНЕРАЦИИ ВТОРИЧНОЙ ПЛАТИНЫ С РАДИОАКТИВНЫМ ЗАРАЖЕНИЕМ ПЛУТОНИЕМ | 2012 |
|
RU2521035C2 |
СПОСОБ ОБРАБОТКИ КОНТУРОВ ВОДООХЛАЖДАЕМЫХ РЕАКТОРОВ | 1999 |
|
RU2169957C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОГЛОТИТЕЛЯ ЭНЕРГИИ В СВЧ-ПРИБОРАХ | 2001 |
|
RU2193957C2 |
СПОСОБ УДАЛЕНИЯ РАДИОАКТИВНОЙ ПЛЕНКИ С ПОВЕРХНОСТЕЙ ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2212067C1 |
СПОСОБ ОЧИСТКИ ЖИДКИХ ОТХОДОВ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ | 1999 |
|
RU2164045C2 |
СПОСОБ ДЕЗАКТИВАЦИИ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ | 2019 |
|
RU2724106C1 |
ЛАЗЕРНОЕ УСТРОЙСТВО МАЛОМОДОВОГО ИЗЛУЧЕНИЯ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛА | 1992 |
|
RU2016089C1 |
СПОСОБ ИСКРОДУГОВОЙ ДЕЗАКТИВАЦИИ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ С ЗАМКНУТЫМ ЦИКЛОМ ПОДАЧИ ВОДЫ | 2000 |
|
RU2172992C1 |
Использование: изобретение относится к области лазерной технологии и может быть использовано при дезактивации металлических конструкций и трубопроводов АЭС при снятии их с эксплуатации. Способ очистки поверхности материалов включает подачу лазерного излучения на обрабатываемую поверхность, лазерное излучение выбирают импульсно-периодического режима с модуляцией добротности резонатора, обеспечивающего плотность мощности на обрабатываемой поверхности, достаточной для возникновения процессов испарения наиболее тугоплавких соединений материалов, входящие в состав оксидной пленки, с абляцией продуктов испарения с обрабатываемой поверхности потоком газа, направление движения которого совпадает с направлением очистки поверхности материала. 1 табл., 2 ил.
Способ очистки поверхности материалов, включающий облучение лазерным излучением обрабатываемой поверхности, отличающийся тем, что лазерное облучение проводят в импульсно-периодическом режиме с модуляцией добротности резонатора, обеспечивающего плотность мощности на обрабатываемой поверхности, достаточную для возникновения процессов испарения наиболее тугоплавких соединений материалов, входящих в состав оксидной пленки, с абляцией продуктов испарения с обрабатываемой поверхности потоком газа, направление движения которого совпадает с направлением очистки поверхности материала.
SU, авторское свидетельство, 1127775, кл | |||
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм | 1919 |
|
SU28A1 |
Авторы
Даты
1998-02-20—Публикация
1996-02-21—Подача