Изобретение относится к области геофизических исследований наклонных (с углом наклона более 65o) и горизонтальных скважин приборами на кабеле.
В целях повышения эффективности разработки нефтяных и газовых месторождений, повышения продуктивности работы скважины в нефтяной практике все более широкое применение находит конструкция скважин с наклонными (с углом наклона более 65o) и горизонтальными (условно горизонтальными) участками ствола, проведенными по продуктивному пласту, для увеличения поверхности стока нефти или газа в скважину. Геофизическое информационное обеспечение таких скважин при строительстве их и дальнейшей эксплуатации сложной проблемой из-за технических трудностей доставки геофизических приборов в горизонтальные участки скважин.
Известны различные устройства и способы доставки приборов в наклонные и горизонтальные участки ствола скважин и проведения географических исследований.
1. Доставка приборов на буровом инструменте и проведение исследований в процессе бурения скважин (приборы смонтированы на буровом инструменте).
2. Доставка приборов на кабеле на забой скважины через бурильные трубы потоком, промывочной жидкости и проведение исследований через бурильные трубы.
3. Спуск приборов на колонне гибких труб, внутри которых размещен геофизический кабель, соединяемый с приборами. Для такой технологии нужно специальное оборудование.
4. Система спуска приборов в специальных контейнерах на бурильных трубах, при этом передача информации производится через геофизический кабель, пропущенный за колонной бурильных труб.
В России эта система и другие ее модификации известны под названием "Горизонталь - 1, 2, 3, 4, 5" [1].
Основные недостатки технологических систем, типа "Горизонталь":
1. Частые случаи выхода из строя геофизического кабеля при работах с бурильными трубами (кабель передавливается).
2. Нахождение приборов в специальных контейнерах искажает исследуемые геофизические поля (электрическое, ядерное и др.) и вносит погрешности в регистрируемые геофизические параметры.
3. Большая трудоемкость, высокая стоимость, большие затраты времени на проведение исследований (до нескольких суток), требуется специальный транспорт для доставки оборудования на скважины, высокая аварийность системы "Горизонталь-4" из-за недостаточной прочности резьбовых соединений, невозможность проведения исследований в действующих скважинах (через насосно-компрессорные трубы или через межтрубье).
В целях повышения технологичности проведения исследований наклонных и горизонтальных скважин, сокращения стоимости и затрат времени на проведение исследований, расширения технологических возможностей проведения геофизических исследований наклонных и горизонтальных скважин в различных геолого-технических условиях (в открытом отводе бурящихся скважин, через бурильные трубы без подъема бурового инструмента, даже при его повороте, через насосно-компрессорные трубы в действующих скважинах или через межтрубье и др. ) предлагается специальный геофизический кабель, имеющий принципиально новые технические параметры, позволяющие осуществлять доставку прибора на забой наклонных и горизонтальных скважин и проводить исследования в различных геолого-технических условиях, используя серийное геофизическое оборудование.
Известен близкий по конструкции бронированный кабель [2]. Этот кабель имеет броню и оболочку из полипропиленового материала. Такая конструкция не обеспечивает достаточной жесткости для проталкивания приборов в горизонтальные скважины.
Для расширения технологических возможностей исследований наклонных и горизонтальных скважин при бурении и в процессе эксплуатации в различных геолого-технических условиях, достижения высокой прочности (120-230 кН), сохранения достаточной жесткости для проталкивания прибора в горизонтальные участки, обеспечения работ под давлением (при герметизации устья скважины сальниковыми устройствами) предлагается конструкция более универсального грузонесущего кабеля.
Кабель состоит из 3 или 7 электрически изолированных токоведущих жил, покрытых 2 или 3-мя парами слоев брони с противоположным направлением повива проволок в каждой паре. Кабель отличается тем, что вторая и третья пары слоев брони выполнены из проволоки в 1,3-2,5 раза большего диаметра проволок 1-ой пары слоев брони, поверх каждой пары нанесено под давлением покрытие из пластичного клеящего материала, заполняющего промежутки между проволоками брони, и внешний диаметр по всей длине кабеля прокалиброван в пределах от 15 до 32 мм.
На фиг. 1 показан кабель с двухслойным бронированием, оболочкой между двумя парами слоев брони и заполнением пространства между проволоками брони пластичным клеящим материалом. При такой конструкции достигается высокая прочность на разрыв (120-230 кН), достаточно высокая жесткость для проталкивания приборов в наклонные и горизонтальные участки скважин, обеспечиваемая качеством стали и большим диаметром проводок 2-й, 3-ей пары слоев брони.
На фиг.2 показан образец кабеля с шестислойным бронированием с заполнением пространства между проволоками брони пластичным клеящим материалом без промежуточных оболочек. Такой кабель обладает еще большей прочностью и жесткостью.
Технические параметры предлагаемых конструкций кабеля приведены в таблице.
С помощью кабеля, приведенного на фиг.1 и 2, возможно проведение исследований во всех категориях нефтяных и газовых скважин в процессе бурения и эксплуатации, при герметизированном устье и через межтрубное пространство. Технологические схемы этих работ приведены на фиг.4, 5, 6.
На фиг. 4 представлена технологическая схема проведения геофизических исследований через бурильные трубы. Аналогичным образом проводятся геофизические исследования в открытом стволе скважин при извлеченном буровом инструменте.
Технология проведения исследований горизонтальных скважин через насосно-компрессорные (НКТ) трубы при герметизации устья сальниковым устройством приведена на фиг.5.
Технологическая схема исследований горизонтальных скважин через межтрубное пространство при опущенный НКТ при наличии насосного оборудования приведена на фиг.6.
Общим для всех видов исследований является следующее.
Кабель с лебедки, расположенной на каротажном подъемнике, соединяется с глубинным прибором, который доставляется в интервал исследований путем проталкивания. С помощью такого кабеля, используя спуско-подъемное оборудование, установленное на геофизических подъемников ПКС-5, ПКС-7 возможно исследование скважин глубиной до 2600 - 3000 м.
Для исследования горизонтальных скважин глубиной до 4000 м целесообразно применение кабеля с изменяющейся конструкцией по длине при сохранении разрывной прочности. Такой кабель фиг.3 состоит из трех секций с разной конструкцией. Нижняя часть кабеля на длине 400-700 м, работающая в искривленном и горизонтальном участках необсаженных скважин имеет диаметр 28-32 мм. Средняя часть на длине 1200-2500 м, работающая в искривленном и вертикальном участках, имеет диаметр 22-23 мм, а остальная, верхняя, часть (1200-1500 м) имеет диаметр 15-18 мм.
Конструкция кабеля во всех секциях соответствует формуле изобретения.
Обеспечение одинаковой разрывной прочности по всей длине кабеля достигается сохранением неизменным качества и диаметра в повивах слове брони, а изменение диаметра обусловлено нанесением оболочек из пластичного материала с изменением шага повива проволок брони.
название | год | авторы | номер документа |
---|---|---|---|
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ | 1996 |
|
RU2087929C1 |
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН | 1998 |
|
RU2138834C1 |
ГРУЗОНЕСУЩИЙ ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН | 2002 |
|
RU2209450C1 |
СПОСОБ ДОСТАВКИ ГЕОФИЗИЧЕСКИХ ПРИБОРОВ НА КАБЕЛЕ В ГОРИЗОНТАЛЬНЫЕ СКВАЖИНЫ | 1998 |
|
RU2138613C1 |
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБЫ ИССЛЕДОВАНИЯ СКВАЖИН | 2017 |
|
RU2696363C2 |
УСТРОЙСТВО И СПОСОБ ГАЗОГИДРОДИНАМИЧЕСКОГО РАЗРЫВА ПРОДУКТИВНЫХ ПЛАСТОВ ДЛЯ ОСВОЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ (ВАРИАНТЫ) | 2010 |
|
RU2442887C1 |
УСТРОЙСТВО И СПОСОБ ТЕРМОГАЗОГИДРОДИНАМИЧЕСКОГО РАЗРЫВА ПРОДУКТИВНЫХ ПЛАСТОВ НЕФТЕГАЗОВЫХ СКВАЖИН (ВАРИАНТЫ) | 2012 |
|
RU2493352C1 |
УСТРОЙСТВО И СПОСОБ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ И ИСПЫТАНИЙ СКВАЖИН | 2001 |
|
RU2199009C2 |
УСТРОЙСТВО И СПОСОБ ТЕРМОГАЗОГИДРОДЕПРЕССИОННО-ВОЛНОВОГО РАЗРЫВА ПРОДУКТИВНЫХ ПЛАСТОВ ДЛЯ ОСВОЕНИЯ ТРУДНО ИЗВЛЕКАЕМЫХ ЗАПАСОВ (ВАРИАНТЫ) | 2015 |
|
RU2592910C1 |
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН | 2003 |
|
RU2248594C1 |
Использование: изобретение относится к области геофизических исследований наклонных и горизонтальных скважин приборами на кабеле. Сущность изобретения: кабель выполнен с двумя или тремя парами повива проволок брони. Между парами наносится покрытие из клеящего пластичного материала, заполняющего также, промежутки между проволоками в повиве, при этом диаметр проволоки во 2-ой и 3-ей парах повива брони в 1,3-2,5 раза превосходит диаметр проволок первой пары. По длине кабель состоит из трех секций. Диаметр нижней секции 28-32 мм, диаметр средней - 22-23 мм, диаметр верхней - 15-18 мм. Способ исследований скважин состоит в том, что прибор с помощью указанного кабеля проталкивается на забой скважины во время бурения или через сальниковое устройство в действующих скважинах. 2 с. и 1 з.п. ф-лы, 1 табл., 6 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Технология промыслово-геофизических исследований горизонтальных скважин | |||
Проспект АО "НПФ "Горизонталь" | |||
- Уфа | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
US, патент 3634607, H 01 B 7/18, 1970. |
Авторы
Даты
1998-02-20—Публикация
1997-01-20—Подача