ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБЫ ИССЛЕДОВАНИЯ СКВАЖИН Российский патент 2019 года по МПК G01V1/52 G01V1/40 G01V3/18 H01B7/22 

Описание патента на изобретение RU2696363C2

Изобретение относится к нефтегазодобывающей и горной промышленности, в частности к устройствам и способам для геофизических исследований и специальных работ в нефтяных и газовых скважинах.

Суть изобретения: специальный геофизический кабель с одной и более электроизолированными токоведущими жилами выполнен с одной, или двумя, или тремя парами противоположно направленных повивов брони из стальной оцинкованной проволоки, при этом для повышения осевой жесткости, противораскручивающей устойчивости и требуемой прочности крепления скважинных приборов к грузонесущей броне в пределах 40÷70% разрывной прочности кабеля каждая пара грузонесущей брони выполняется из проволоки одного диаметра, величина которого во 2-ой и 3-ей парах в 1,2÷2,5 раза больше диаметра проволок первой пары брони, наряду с этим повивы первого и второго слоев брони выполняют из проволоки диаметром в пределах 0,64÷1,5 мм, повивы третьего и четвертого слоев грузонесущей брони выполняют из проволоки диаметром в пределах 1,3÷3 мм, повивы пятого и шестого слоев грузонесущей брони выполняют из проволоки диаметром в пределах 1,6÷3,25 мм и для обеспечения герметичности на каждую пару брони кабеля может наноситься покрытие из полимерного или композитного материала, обладающего необходимой износоустойчивостью, термической и химической стойкостью.

Такой кабель обладает высокой разрывной прочностью и жесткостью с сохранением необходимой гибкости, позволяет проводить работы в вертикальных, наклонно-направленных и горизонтальных скважинах с зенитным углом до 90° и более с различными термогазохимическими условиями, допускает применение герметизирующих устройств, инжекторных систем для принудительного перемещения по стволу скважины.

Известны серийно выпускаемые грузонесущие геофизические кабели для геофизических исследований, прострелочных, взрывных и других работ в скважинах, бурящихся на нефть, газ, руду, уголь и другие полезные ископаемые в одно-, трех- и семижильном исполнении с несколько различающимися параметрами по разрывной прочности, диаметру, электроизоляционными материалами и другими отличиями, но при одном обязательном конструктивном исполнении - применении двухслойного бронировочного покрытия. См. каталоги кабельной продукции заводов: Ташкентского (АО «UZKABEL»), Псковского (ООО «Псковгеокабель»), Пермского (ООО «Пермгеокабель»), Магнитогорского (НПЦ «Гальва») и других.

Известны конструкции специальных геофизических кабелей для исследования наклонных, наклонно-направленных и горизонтальных скважин (Патенты РФ №2087929 от 12.03.1996 г., №2105326 от 20.01.1997 г., №2138613 от 18.05.1998 г., №2138834 от 25.12.1998 г., №2209450 от 14.01.2002 г.), имеющие многослойное бронировочное покрытие и оболочки из полимерного материала.

Близкими к заявленным изобретениям являются геофизический кабель и способ его использования, описанные в патенте №2105326. Кабель состоит из трех и более изолированных токоведущих жил, покрытых двумя или тремя парами слоев брони с противоположно направленными повивами проволок в каждой паре, при этом вторая и третья пары слоев брони изготовлены из проволоки, диаметр которой в 1,3÷2,5 раза больше диаметра проволок первой пары слоев брони, поверх каждой пары нанесено под давлением покрытие из пластичного материала, заполняющего промежутки между проволоками брони. С помощью этого кабеля осуществляют доставку приборов при исследовании скважин.

Наиболее близким к заявленным изобретениям являются геофизический кабель (варианты) и способ исследования скважин, описанные в патенте №2138834. Кабель состоит из одной или более токоведущих электроизолированных жил и трех-, или четырех-, или шестислойной брони из стальной оцинкованной проволоки, первый слой брони образован повивом из 11÷23 проволок диаметром 0,64÷1,1 мм, второй слой брони образован повивом 12÷24 проволок диаметром 0,99÷1,3 мм, третий слой брони образован повивом 18÷36 проволок диаметром 1,1÷1,7 мм, четвертый слой брони образован повивом 21÷36 проволок диаметром 1,3÷2,4 мм, пятый и шестой слои брони образованы повивом 30÷36 проволок диаметром 1,3÷3 мм, при этом между слоями брони и поверх ее могут быть нанесены оболочки из полимерного или другого материала.

Кроме того, геофизический кабель для исследования скважин, состоящий из одной или более электроизолированных токоведущих жил, может быть выполнен комбинированным, верхняя грузонесущая часть которого имеет двух или четырехслойную броню из оцинкованной проволоки, а нижняя часть имеет броню и промежуточную, и наружную оболочки из полимерного материала, при этом первый слой брони верхней и нижней части кабеля образован повивом 11÷23 проволок брони диаметром 0,64÷1,1 мм, второй слой брони образован повивом 12÷24 проволок диаметром 0,99÷1,3 мм, третий слой брони образован повивом 18÷36 проволок диаметром 1,1÷1,7 мм, четвертый слой брони образован повивом 21÷36 проволок диаметром 1,3÷2,4 мм, верхняя грузонесущая часть кабеля имеет диаметр 10,1÷22,2 мм, нижняя часть до 75% от общей длины имеет диаметр 28÷38 мм и два дополнительных слоя брони, расположенных между наружной и промежуточной оболочками из полимерного материала, причем на участке нижней части от конца кабеля третий и четвертый слои брони могут отсутствовать.

Описанные кабели применяются при исследовании скважин для доставки приборов в интервал исследований.

В качестве недостатков этих кабелей следует отметить следующее:

1. Комбинированная конструкция кабеля в значительной мере осложняет проведение работ на скважине из-за разного диаметра кабеля по длине в части применения устьевых герметизирующих устройств и проталкивающих систем.

2. Применение проволок разного диаметра в парах с противоположно-направленными повивами брони кабеля:

а) осложняет конструктивное исполнение грузоподвешивающих устройств для подсоединения скважинных приборов.

б) снижет осевую жесткость и противораскручивающую устойчивость кабеля.

в) затрудняет обеспечение требуемой прочности крепления скважинных приборов к кабелю.

г) затрудняет технологический процесс изготовления кабеля.

3. Не отражены требования к полимерным материалам, применяемым для покрытия кабелей.

Технической задачей изобретения является создание новых геофизических кабелей для проведения исследований скважин и специальных работ по свабированию скважин, газодинамическому воздействию на продуктивный пласт для интенсификации работы скважин, испытанию пластов кабельными пластоиспытателями, очистке прискважинной зоны продуктивных пластов специальными устройствами, требующими применения кабелей с наиболее высокой осевой жесткостью и противораскручивающей устойчивостью, прочностью крепления скважинных приборов к грузонесущей броне в пределах 40÷70% разрывной прочности кабеля, позволяющими проведение работ в вертикальных, наклонно-направленных и горизонтальных скважинах с зенитным углом до 90° и более с различными термогазохимическими условиями, с возможностью применения устьевых герметизирующих устройств и проталкивающих систем.

Поставленная техническая задача решается тем, что для работ в скважинах предложен геофизический кабель с одной или более электроизолированными токоведущими жилами и двух-, или четырех-, или шестислойной броней из стальной оцинкованной проволоки, отличающийся тем, что для повышения осевой жесткости, противораскручивающей устойчивости и требуемой прочности крепления скважинных приборов к грузонесущей броне в пределах 40÷70% разрывной прочности кабеля каждую пару грузонесущей брони выполняют из проволоки одного диаметра, величина которого во 2-ой и 3-ей парах в 1,2÷2,5 раза больше диаметра проволок первой пары брони, наряду с этим повивы первого и второго слоев брони выполняют из проволоки диаметром в пределах 0,64÷1,5 мм, повивы третьего и четвертого слоев грузонесущей брони - из проволоки диаметром в пределах 1,3÷3 мм, повивы пятого и шестого слоев грузонесущей брони - из проволоки диаметром в пределах 1,6÷3,25 мм и для обеспечения герметичности на каждую пару брони кабеля может наноситься покрытие из полимерного или композитного материала, обладающего необходимой износоустойчивостью, термической и химической стойкостью.

Технический результат по первому пункту заявляемого изобретения достигается тем, что предложен геофизический кабель, состоящей из одной или более электроизолированных токоведущих жил и двух-, или четырех-, или шестислойной брони из стальной оцинкованной проволоки, отличающийся тем, что для повышения осевой жесткости, противораскручивающей устойчивости и требуемой прочности крепления скважинных приборов к грузонесущей броне в пределах 40÷70% разрывной прочности кабеля каждую пару грузонесущей брони выполняют из проволоки одного диаметра, величина которого во 2-ой и 3-ей парах в 1,2÷2,5 раза больше диаметра проволок первой пары брони, наряду с этим повивы первого и второго слоев брони выполняют из проволоки диаметром в пределах 0,64÷1,5 мм, повивы третьего и четвертого слоев грузонесущей брони - из проволоки диаметром в пределах 1,3÷3 мм, повивы пятого и шестого слоев грузонесущей брони - из проволоки диаметром в пределах 1,6+3,25 мм и для обеспечения герметичности на каждую пару брони кабеля может наноситься покрытие из полимерного или композитного материала, обладающего необходимой износоустойчивостью, термической и химической стойкостью.

Технический результат по второму пункту заявляемого изобретения достигается тем, что применен способ исследования скважин, включающий доставку приборов в интервал исследований, отличающийся тем, что доставку приборов в вертикальные или наклонно-направленные или горизонтальные скважины с зенитным углом до 90° и более с различными термогазохимическими условиями осуществляют с помощью кабеля по первому пункту с возможностью применения герметизирующих устройств, инжекторных систем для принудительного перемещения по стволу скважины.

Технические параметры и конструкция кабеля и его варианты приведены в таблице 1.

Источники информации

1. Патент РФ №2087929, G01V 3/18, 12.03.1996.

2. Патент РФ №2105326, G01V 3/18, 20.01.1997.

3. Патент РФ №2138613, 6 Е21В 23/08, 18.05.1998.

4. Патент РФ №2138834, G01V 1/40, 3/18, 25.12.1998.

5. Патент РФ №2209450, 7 G01V 1/52, 3/18, Н01В 7/18, 14.01.2002.

Примечания:

1 Температуростойкость кабеля определяется применяемыми в его конструкции электроизоляционными, полимерными или композитными материалами

2 В таблице представлены некоторые из возможных вариантов кабелей. Конструкции разрабатываются индивидуально для конкретных горно-геологических условий эксплуатации кабеля

Похожие патенты RU2696363C2

название год авторы номер документа
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН 1998
  • Корженевский А.Г.
  • Корженевский А.А.
  • Алейников В.Н.
  • Корженевская Т.А.
RU2138834C1
ГРУЗОНЕСУЩИЙ ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН 2002
  • Корженевский А.Г.
  • Корженевский А.А.
  • Корженевская Т.А.
RU2209450C1
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН И СПОСОБ ИССЛЕДОВАНИЯ ЭТИХ СКВАЖИН 1997
  • Корженевский А.Г.
  • Корженевский А.А.
  • Алейников В.Н.
RU2105326C1
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН 2003
  • Камалутдинов М.К.
  • Шеметов Г.В.
  • Биктимиров Х.М.
  • Камалутдинов И.М.
RU2248594C1
УСТРОЙСТВО И СПОСОБ ГАЗОГИДРОДИНАМИЧЕСКОГО РАЗРЫВА ПРОДУКТИВНЫХ ПЛАСТОВ ДЛЯ ОСВОЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ (ВАРИАНТЫ) 2010
  • Корженевский Арнольд Геннадьевич
  • Корженевский Андрей Арнольдович
  • Корженевская Татьяна Арнольдовна
  • Корженевский Алексей Арнольдович
RU2442887C1
УСТРОЙСТВО И СПОСОБ ТЕРМОГАЗОГИДРОДИНАМИЧЕСКОГО РАЗРЫВА ПРОДУКТИВНЫХ ПЛАСТОВ НЕФТЕГАЗОВЫХ СКВАЖИН (ВАРИАНТЫ) 2012
  • Корженевский Арнольд Геннадьевич
  • Корженевский Андрей Арнольдович
  • Корженевская Татьяна Арнольдовна
  • Корженевский Алексей Арнольдович
RU2493352C1
УСТРОЙСТВО И СПОСОБ ТЕРМОГАЗОГИДРОДЕПРЕССИОННО-ВОЛНОВОГО РАЗРЫВА ПРОДУКТИВНЫХ ПЛАСТОВ ДЛЯ ОСВОЕНИЯ ТРУДНО ИЗВЛЕКАЕМЫХ ЗАПАСОВ (ВАРИАНТЫ) 2015
  • Корженевский Арнольд Геннадьевич
  • Корженевский Андрей Арнольдович
  • Корженевская Татьяна Арнольдовна
  • Корженевский Алексей Арнольдович
RU2592910C1
ГРУЗОНЕСУЩИЙ ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ С АРМИРОВАННОЙ ПОЛИМЕРНОЙ ОБОЛОЧКОЙ И СПОСОБ ЕГО ПРИМЕНЕНИЯ 2003
  • Робин Андрей Викторович
  • Алексеев Алексей Иванович
RU2269834C2
УСТРОЙСТВО С ПОРОХОВЫМ ЗАРЯДОМ ДЛЯ СТИМУЛЯЦИИ СКВАЖИН И СПОСОБ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Романович Алексей Павлович
  • Кузьмицкий Геннадий Эдуардович
  • Пелых Николай Михайлович
  • Локтев Михаил Васильевич
  • Корженевский Арнольд Геннадьевич
  • Корженевский Андрей Арнольдович
  • Харисов Ринат Гатинович
  • Мухамадиев Рамиль Сафиевич
  • Кустов Василий Геннадьевич
RU2311530C1
ГЕОФИЗИЧЕСКИЙ БРОНИРОВАННЫЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН 2007
  • Камалутдинов Масхут Кутдусович
  • Шеметов Геннадий Васильевич
  • Биктимиров Хаким Мидхатович
  • Камалутдинов Ильдар Масхутович
RU2344505C1

Реферат патента 2019 года ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБЫ ИССЛЕДОВАНИЯ СКВАЖИН

Изобретение относится к нефтегазодобывающей и горной промышленности, в частности к устройствам и способам для геофизических исследований и специальных работ в вертикальных, наклонно-направленных и горизонтальных скважинах. Геофизический кабель с одной и более электроизолированными токоведущими жилами выполнен с одной, или двумя, или тремя парами противоположно направленных повивов брони. При этом для повышения осевой жесткости, противораскручивающей устойчивости кабеля и обеспечения прочности крепления скважинных приборов до 40÷70% от разрывной прочности кабеля, составляющей 60÷300 кН и более, наряду с этим каждая пара грузонесущей брони выполняется из проволоки одного диаметра, величина которого во 2-й и 3-й парах в 1,2÷2,5 раза больше диаметра проволок первой пары брони. Кабель выполнен с возможностью нанесения на каждую пару брони покрытия из полимерного или композитного материала, обладающего необходимой износоустойчивостью, термической и химической стойкостью. Также предложен способ исследования скважин, в котором доставку приборов в скважину осуществляют посредством кабеля указанной выше конструкции с использованием герметизирующих устьевых систем и проталкивающих устройств. Технический результат – повышение осевой жесткости и противораскручивающей устойчивости кабеля, а также прочности крепления скважинных прибороы к кабелю и, как результат, повышение информативности получаемых данных исследований. 2 н.п. ф-лы, 1 табл.

Формула изобретения RU 2 696 363 C2

1. Геофизический кабель, состоящий из одной или более электроизолированных токоведущих жил и двух-, или четырех-, или шестислойной брони из стальной оцинкованной проволоки, отличающийся тем, что для повышения осевой жесткости, противораскручивающей устойчивости и требуемой прочности крепления скважинных приборов к грузонесущей броне в пределах 40÷70% разрывной прочности кабеля каждую пару грузонесущей брони выполняют из проволоки одного диаметра, величина которого во 2-й и 3-й парах в 1,2÷2,5 раза больше диаметра проволок первой пары брони, наряду с этим повивы первого и второго слоев брони выполняют из проволоки диаметром в пределах 0,64÷1,5 мм, повивы третьего и четвертого слоев грузонесущей брони - из проволоки диаметром в пределах 1,3÷3 мм, повивы пятого и шестого слоев грузонесущей брони - из проволоки диаметром в пределах 1,6÷3,25 мм и для обеспечения герметичности на каждую пару брони кабеля может наноситься покрытие из полимерного или композитного материала, обладающего необходимой износоустойчивостью, термической и химической стойкостью.

2. Способ исследования скважин, включающий доставку приборов в интервал исследований, отличающийся тем, что доставку приборов в вертикальные или наклонно-направленные или горизонтальные скважины с зенитным углом до 90° и более с различными термогазохимическими условиями осуществляют с помощью кабеля по п. 1 с возможностью применения герметизирующих устройств, инжекторных систем для принудительного перемещения по стволу скважины.

Документы, цитированные в отчете о поиске Патент 2019 года RU2696363C2

ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИН 1998
  • Корженевский А.Г.
  • Корженевский А.А.
  • Алейников В.Н.
  • Корженевская Т.А.
RU2138834C1
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН И СПОСОБ ИССЛЕДОВАНИЯ ЭТИХ СКВАЖИН 1997
  • Корженевский А.Г.
  • Корженевский А.А.
  • Алейников В.Н.
RU2105326C1
ГРУЗОНЕСУЩИЙ ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ (ВАРИАНТЫ) И СПОСОБ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН 2002
  • Корженевский А.Г.
  • Корженевский А.А.
  • Корженевская Т.А.
RU2209450C1
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН 2003
  • Камалутдинов М.К.
  • Шеметов Г.В.
  • Биктимиров Х.М.
  • Камалутдинов И.М.
RU2248594C1
Способ очистки щелочных растворов, в частности алюминатных щелоков 1935
  • Мухачев В.М.
SU51978A1
Кабели грузонесущие геофизические бронированные
Общие технические условия
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
ГЕОФИЗИЧЕСКИЙ КАБЕЛЬ ДЛЯ ИССЛЕДОВАНИЯ НАКЛОННЫХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 1996
  • Корженевский А.Г.
  • Корженевский А.А.
  • Алейников В.Н.
RU2087929C1
US 20120222869 A1, 06.09.2012.

RU 2 696 363 C2

Авторы

Корженевский Арнольд Геннадьевич

Корженевский Андрей Арнольдович

Корженевская Татьяна Арнольдовна

Корженевский Алексей Арнольдович

Даты

2019-08-01Публикация

2017-12-15Подача