Изобретение относится к области инженерной сейсмологии, а именно к способам оценки интенсивности сотрясений с учетом свойств грунтов, слагающих площадку строительства.
Известен способ сейсмического микрорайонирования, включающий возбуждение сейсмических колебаний невзрывным маломощным импульсным источником, регистрацию их сейсмоприемниками, расположенными на участках с различными инженерно-геологическими условиями, определение значения скоростей поперечных волн, плотностей соответствующих грунтов и оценку на основе этих характеристик приращения балльности [1]
Недостатком способа является низкая надежность.
Наиболее близким по технической сущности и достигаемому результату к предложенному является способ сейсмического микрорайонирования, включающий возбуждения сейсмических колебаний в грунте вибрационным источником, регистрацию их сейсмоприемниками, расположенными на участках с различными инженерно-геологическими условиями и построение спектров колебаний [2]
Недостатком способа является низкая надежность и точность из-за отсутствия контроля за степенью нелинейности и неупругости грунтов, слагающих исследуемую толщу, что весьма важно для оценки ее физического состояния или сейсмических свойств.
Техническая задача изобретения повышение надежности и точности за счет контроля за вкладом в результирующее грунтовое движение явлений нелинейности и неупругости.
Для достижения поставленной технической задачи в способе сейсмического микрорайонирования, включающем возбуждение сейсмических колебаний в грунте вибрационным источником, регистрацию их сейсмоприемниками, расположенными на участках с различными инженерно-геологическими условиями и построение спектров колебаний, измеряют максимальные амплитуды спектров колебаний и их средневзвешенные частоты исследуемого и эталонного грунтов, находящихся на расстоянии, меньшем и большем длины волны сейсмических колебаний, определяют нелинейно-упругие приращения балльности из соотношения:
где
(Ai)1- максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии меньшем длины волны сейсмических колебаний, м;
(Ai)2 максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м;
(Ao)1 максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии меньшем длины волны сейсмических колебаний, м;
(Ao)2 максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии большем длины волны сейсмических колебаний, м;
(fсвi)1 средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии меньшем длины волны сейсмических колебаний, Гц;
(fсвi)2 средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии большем блины волны сейсмических колебаний, Гц;
(fсво)1 средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии меньшем длины волны сейсмических колебаний, Гц;
(fсво)2 средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии большем длины волны сейсмических колебаний, Гц;
и по значениям нелинейно-неупругих приращений балльности судят о степени сейсмического эффекта.
Способ сейсмического микрорайонирования осуществляется следующим образом.
На территории, подлежащей сейсмическому микрорайонированию, производят инженерно-геологические исследования, на основании которых выделяются типичные участки с различными инженерно-геологическими условиями. После этого, в пределах выделенных участков располагают идентичные сейсмические каналы, включающие сейсмоприемники и регистратор.
На фиксированном расстоянии от каждого из пунктов регистрации располагают сейсмический вибрационный источник и производят стандартное воздействие в виде "свип-сигнала", представляющего плавно увеличивающееся колебание источника, созданного в грунте напряжения не менее 5 кг/см2, что позволяет приблизиться к реальным сейсмическим воздействиям.
Производят регистрацию колебаний и построение спектров колебаний. Измеряют максимальные амплитуды спектров и их средневзвешенные частоты исследуемого и эталонного грунтов, находящихся на расстоянии, меньшем и большем длины волны сейсмических колебаний. Определяют нелинейно-неупругие приращения балльности из соотношения:
где
(Ai)1 максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, м;
(Ai)2 максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м;
(Ao)1 максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, м;
(Ao)2 максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м;
(fсвi)1 средневзвешенная частота спектра колебаний исследуемого грунта, находящихся на расстоянии, меньшем длины волны сейсмических колебаний, Гц;
(fсвi)2 средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, Гц;
(fсво)1 средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, Гц;
(fсво)2 средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, Гц.
Пример осуществления способа сейсмического микрорайонирования.
На территории г. Кутаиси были проведены геолого-геофизические работы по сейсмическому микрорайонированию. В качестве источника сейсмических колебаний использовался вибрационный источник СВ-10/100 с рабочей полосой частот 4-100 Гц. При этом в окрестности источника напряжения в грунте, обусловленные упругой волной превышают 5 кг/см2. Упрощенной обработкой сейсмограмм "свип-сигналов" рассчитывались виброспектры колебаний, пики и средневзвешенные частоты спектров колебаний грунтов. Время воздействия составляло t 12 с, "свип-сигнал" в пределах частот 4-100 Гц характеризовался силой воздействия 100 кН.
В таблице 1 приведен расчет приращения балльности грунтов территории г. Кутаиси.
В таблице 2 приведены расчеты приращения балльности грунтов территории г.Кутаиси по известным и предложенному способу.
Преимуществом способа сейсмического микрорайонирования заключаются в том, что интенсивности возбуждаемых колебаний приближаются к соответствующим характеристикам землетрясений, причем сопоставление введенных показателей нелинейности на расстояниях, большем и меньшем длины волны сейсмических колебаний, позволяет оценивать и контролировать степень нелинейных и неупругих явлений в грунтах и связь с их сейсмическими свойствами в виде приращения балльности на выделенных участках по реакции грунтов на стандартное вибрационное воздействие.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1996 |
|
RU2105997C1 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1996 |
|
RU2105998C1 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1996 |
|
RU2105995C1 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162612C2 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162607C2 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162610C2 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162613C2 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162608C2 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162609C2 |
СПОСОБ СЕЙСМИЧЕСКОГО МИКРОРАЙОНИРОВАНИЯ | 1999 |
|
RU2162606C2 |
Использование: область инженерной сейсмологии, а именно способы оценки интенсивности сотрясений с учетом свойств грунтов, слагающих площадку строительства. Сущность изобретения: в грунте вибрационным источником производят возбуждение сейсмических колебаний, регистрируют их сейсмоприемниками, расположенными на участках с различными инженерно-геологическими условиями и производят построение спектров колебаний. Измеряют максимальные амплитуды спектров и их средневзвешенные частоты исследуемого и эталонного грунтов, находящихся на расстояниях, меньшем и большем длины волны сейсмических колебаний, определяют нелинейно-неупругие приращения балльности из соотношения:
ΔI = 3,3lg(Aifсвi)1(Aofсво)2/(Aifсвi)2(Aofсво)1
где (Ai)1 - максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии меньшем длины волны сейсмических колебаний, м; (Ai)2 - максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м; (Ao)1 - максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м; (Ao)2 - максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии большем длины волны сейсмических колебаний, м; (fС Б i)1 - средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, Гц; (fС В i)2 - средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии большем длины волны сейсмических колебаний, Гц; (fС В о)1 - средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, Гц; (fС В о)2 - средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, Гц, и по значениям нелинейно-неупругих приращений балльности судят о степени сейсмического эффекта, 2 табл.
Способ сейсмического микрорайонирования, включающий возбуждение сейсмических колебаний в грунте вибрационным источником, регистрацию их сейсмоприемниками, расположенными на участках с различными инженерно-геологическими условиями, и построение спектров колебаний, отличающийся тем, что измеряют максимальные амплитуды спектров колебаний и их средневзвешенные частоты исследуемого и эталонного грунтов, находящихся на расстоянии, меньшем и большем длины волны сейсмических колебаний, и определяют нелинейно-неупругие приращения балльности из соотношения
где (Ai)1 максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, м;
(Ai)2 максимальная амплитуда спектра колебаний исследуемого грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м;
(A0)1 максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м;
(А0)2 максимальная амплитуда спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, м;
(fc в i)1 средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, Гц;
(fc в i)2 средневзвешенная частота спектра колебаний исследуемого грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, Гц;
(fс в о)1 средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии, меньшем длины волны сейсмических колебаний, Гц;
(fс в о)2 средневзвешенная частота спектра колебаний эталонного грунта, находящегося на расстоянии, большем длины волны сейсмических колебаний, Гц,
и по значениям нелинейно-неупругих приращений балльности судят о степени сейсмического эффекта.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Рекомендации по сейсмическому микрорайонированию, М., Наука, 1985, с | |||
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, патент 1787276, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1998-02-27—Публикация
1996-07-25—Подача