Изобретение относится к акустическому приборостроению и может быть использовано в ультразвуковых системах управления технологическими процессами: для определения скорости поступательного или вращательного движения механизмов на основе эффекта Доплера.
Определение скорости движения объектов по доплеровскому смещению частоты, как правило, проводится в непрерывном режиме работы преобразователей, т.е. требует раздельного применения излучателя и приемника, которые конструктивно объединяют (Гидроакустическая техника исследования и освоения океана. Ред. В.В.Богородский. -Л., 1984, с.54-65, с. 127-175).
Такие преобразователи называют раздельно-совмещенными и по сравнению с совмещенными преобразователями, когда один преобразователь работает последовательно в режиме излучения и приема, они обладают меньшими уровнем собственных помех, малой мертвой зоной и более высоким коэффициентом передачи измерительного тракта.
Известные раздельно-совмещенные преобразователи содержат два идентичных пьезоэлемента, как правило, для частот свыше 100 кГц, работающие на толщинных модах колебаний, помещенных в общий корпус [1,2,4].
При работе таких преобразователей в газовых средах важным фактором является расширение полосы их рабочих частот и согласование с низкоимпедансной газовой средой (удельный импеданс пьезокерамики Z=23•106 Па•с/м, воздуха Zb= 440 Па•с/м).
Наиболее близким по технической сущности к предлагаемому является раздельно-совмещенный ультразвуковой преобразователь [5, стр.280], содержащий излучатель и приемник в виде идентичных пьезоэлементов в форме дисков с фронтальными накладками, общий цилиндрический корпус, в пазах которого симметрично относительно диаметрально расположенного акустического экрана установлены излучатель и приемник, а также электрический экран. Расширение рабочего диапазона частот (полосы пропускания) такого преобразователя обеспечивается с помощью демпфера, жестко закрепленного на тыльной стороне излучателя и приемника, ввиду чего преобразователь малоэффективен при работе в газовой среде. Кроме того, недостаточна акустическая развязка излучателя и приемника: жесткий корпус, демпфер, контактирующий с ним, акустический экран даже в виде низкоимпедансного слоя кожи или пенополистирола - все это приводит к проникновению на приемник акустических помех, особенно при работе в непрерывном режиме.
Задачей изобретения является разработка раздельно-совмещенного широкополосного ультразвукового преобразователя, способного эффективно работать в газовой среде в области частот до 0,5 МГц (сравнительно высоких для газов).
При этом технический результат, который может быть получен при осуществлении изобретения, заключается в повышении чувствительности преобразователя в режиме приема и излучения, расширении полосы рабочих частот, необходимом для расширения диапазона измеряемых скоростей движущихся объектов, а также уменьшении собственных перекрестных помех между излучателем и приемником. Кроме того, повышение рабочих частот преобразователя до нескольких сотен килогерц (до 0,5 мГц) обеспечивает повышение точности измерения скорости движения поверхностей, имеющих малую шероховатость.
Для решения поставленной задачи в раздельно-совмещенный ультразвуковой преобразователь, содержащий излучатель и приемник в виде идентичных пьезоэлементов с фронтальными накладками, общий цилиндрический корпус, в пазах которого симметрично относительно диаметрально расположенного акустического экрана установлены излучатель и приемник, и электрический экран, введены новые признаки, а именно: корпус выполнен из резиноподобного материала и имеет диаметральный паз, являющийся воздушным акустическим экраном, излучатель и приемник установлены в пазах с помощью резиновых уплотнительных колец, зафиксированных на их боковых поверхностях так, что между корпусом и тыльными поверхностями излучателя и приемника имеется воздушный зазор, при этом фронтальные накладки излучателя и приемника выполнены в виде двух четвертьволновых слоев с удельными импедансами Z1= (0,1 -0,4)•106 Па•с/м и Z2= (1-5)•106 Па•с/м, причем слой с удельным импедансом Z1 является внешним.
Для уменьшения связи между излучателем и приемником и снижения потерь уплотнительные резиновые кольца могут быть установлены посередине высоты пьезоэлементов.
На тыльной поверхности пьезоэлемента и приемника для обеспечения надежности крепления токовводов и улучшения электрического экранирования установлен слой металлической фольги через резиновую прокладку, который к тому же является электрическим экраном.
Теоретически авторами показано, что наилучшим образом позволяет согласовать пьезоэлемент с газовой средой система из n слоев при том, что удельный импеданс внешнего слоя приближается к удельному импедансу газовой среды, а удельный импеданс слоя примыкающего к пьезоэлементу - к удельному импедансу пьезокерамики. При этом было установлено, что акустико-механический КПД может быть увеличен до 60% (в то время как без согласования он составляет 0,1%) что в свою очередь приводит к существенному (в 5-10 раз) увеличению чувствительности преобразователя в режимах приема и излучения, и полоса пропускания увеличена в 5-10 раз уже при двух слоях, если их импедансы лежат в заявленных пределах.
Наличие третьего слоя не приводит к существенному повышению КПД, неоправдано усложняя конструкцию.
При практической реализации конструкции преобразователя с двумя оптимальными слоями наибольшую трудность представляет подбор материалов с соответствующими параметрами, в связи с чем значение удельных импедансов слоев в большой степени определяется наличием конструкционных материалов с удовлетворяющими параметрами.
При выходе значений импедансов слоев за указанные пределы наблюдается рассогласование излучателя и приемника с газовой средой, что приводит к снижению акустико-механического КПД и уменьшению полосы пропускания.
Выполнение корпуса преобразователя из резиноподобного материала, а также наличие воздушного экрана в виде паза между излучателем и приемником способствует уменьшению акустической связи между ними. Этой же цели служит уплотнительное резиновое кольцо, особенно если оно установлено посередине высоты пьезоэлементов в области узла (минимума) упругих колебаний.
Выполнение электрического экрана в виде слоя металлической фольги, установленного через резиновую прокладку на тыльной стороне пьезоэлемента излучателя и приемника, обеспечивает надежное и технологичное крепление токоввода.
На чертеже представлена конструкция раздельно-совмещенного ультразвукового преобразователя.
Преобразователь 1 состоит из двух идентичных пьезоэлементов 2,3, один из которых 2 работает в режиме излучения, а другой 3 - в режиме приема. Пьезоэлементы представляют собой диски из керамики ЦТСБ-3 диаметром 25 мм и толщиной 7 мм.
На фронтальной поверхности каждого пьезоэлемента нанесены два согласующих слоя 4, 5, имеющих толщину, равную четверти длины волны в материале слоев на рабочей частоте. Внутренний слой 4 толщиной 2,6 мм выполнен из прессовочного материала на основе стекловолокна типа ДВС с удельным импедансом Z2=4 106 Па•с/м, а внешний 5 - толщиной 1,3 мм из пенополиуретана с удельным сопротивлением Z1= 0,3•106 Па•с/м. При этом отношение Z2/Z1=13. Наилучшие результаты получатся, если 10≤Z2/Z1≤50.
Пьезоэлементы 2, 3 размещены в пазах 6 цилиндрического литого корпуса 7 под углом 6o от горизонтали, как показано на чертеже. Этот угол определяется параметрами характеристик направленности преобразователей и расстоянием до контролируемой поверхности.
Пьезоэлементы крепятся в пазах 6 с помощью резиновых уплотнительных колец 8, установленных между внутренней поверхностью пазов 6 и боковой поверхностью пьезоэлементов 2, 3. Уплотнительные кольца 8 размещены посередине высоты пьезоэлементов 2, 3.
По диаметральной плоскости раздельно-совмещенного преобразователя 1, проходящей между излучателем и приемником в цилиндрическом литом резиновом корпусе 7, выполнен паз 9, являющийся воздушным акустическим экраном между ними.
Между дном пазов 6 и тыльной стороной пьезоэлементов 2, 3 имеется воздушный зазор 10.
На тыльные поверхности пьезоэлементов 2,3 наклеены слои фольги 11, которые в данной конструкции выполнены в виде шайб из металлизированного текстолита толщиной 0,5 мм через развязывающую резиновую прокладку 12 толщиной 1,5 мм, выполненную из вакуумной резины. Шайбы 11 являются электрическим экраном пьезоэлементов 2,3 и служат для монтажа. К ним припаяны выводы от электродов на фронтальных поверхностях пьезоэлементов.
Боковые поверхности пьезоэлементов 2,3 защищены электрическими экранами 13.
Раздельно-совмещенный ультразвуковой преобразователь работает следующим образом. На излучающий пьезоэлемент подается электрический сигнал. Излучаемый ультразвуковой сигнал отражается от контролируемой движущейся поверхности и принимается приемным пьезоэлементом 3.
Отраженный ультразвуковой сигнал имеет сдвиг по частоте, обусловленный эффектом Доплера, величина которого зависит от скорости движения контролируемого объекта.
Рассматриваемые преобразователи обладают относительной полосой пропускания ≈ 10%, что позволяет производить бесконтактный контроль отклонения скорости движения поверхности, имеющей малую шероховатость (например, ленты эскалатора метрополитена) от номинальной в диапазоне (0,5-3,0) м/с.
Преобразователь имеет сравнительно простую конструкцию, технологичен, изготовлен из относительно дешевых и доступных материалов, обладает высокой эффективностью и надежностью и может найти применение в различных областях промышленности для контроля скорости движущихся поверхностей, например транспортерных лент, в том числе эскалаторных лент метрополитена.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ РАБОТЫ В ГАЗОВОЙ СРЕДЕ | 2005 |
|
RU2273967C1 |
АКУСТИЧЕСКИЙ СТЕРЖНЕВОЙ ПРЕОБРАЗОВАТЕЛЬ | 2002 |
|
RU2230615C1 |
ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ АКУСТИЧЕСКОГО КАНАЛА СВЯЗИ | 2004 |
|
RU2276725C2 |
Ультразвуковой раздельно-совмещенный преобразователь | 2023 |
|
RU2811322C1 |
Ультразвуковой раздельно-совмещенный преобразователь | 2018 |
|
RU2697024C1 |
СКВАЖИННЫЙ АКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ | 2000 |
|
RU2164829C1 |
ГИДРОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ МАЯКА-ОТВЕТЧИКА | 2007 |
|
RU2340122C1 |
Ультразвуковой раздельно-совмещенный преобразователь | 2019 |
|
RU2718129C1 |
СКВАЖИННЫЙ АКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ | 2003 |
|
RU2244946C1 |
МНОГОСЛОЙНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО СБОРКИ | 2021 |
|
RU2774652C1 |
Преобразователь предназначен для определения скорости поступательного и вращательного движения в ультразвуковых системах управления технологическими процессами. Для создания эффективного высокочастотного широкополосного преобразователя для газовой среды излучатель и приемник выполнены в виде идентичных пьезоэлементов с фронтальными накладками, состоящими из двух четвертьволновых слоев с удельными импедансами Z1 = (0,1 - 0,4)106 Па•с/м и Z2 = (1 - 5) 106 Па•с/м. Слой с удельным сопротивлением Z1 является внешним. Цилиндрический корпус преобразователя выполнен из резиноподобного материала и имеет диаметральный паз, являющийся акустическим экраном. Излучатель и приемник установлены в пазах корпуса, симметричных относительно акустического экрана, с помощью резиновых уплотнительных колец, зафиксированных на боковых поверхностях. 2 з.п.ф-лы, 1 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
US, патент N 5175709, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
EP, заявка N 0427649, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
RU, патент N 2054668, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
RU, патент N 2020479, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Ультразвуковые пьезопреобразователи для неразрушающего контроля | |||
Под ред.И.Н.Ермолова | |||
- М.: Машиностроение, 1986, с.226-227. |
Авторы
Даты
1998-03-20—Публикация
1996-10-30—Подача