Изобретение относится к геофизическим способам исследования природных сред и может быть успешно использовано в области инженерной геологии.
Известен способ геоэлектроразведки - авторское свидетельство СССР N 451032, кл. G 01 V 3/12, 1971. Способ включает излучение двумя источниками, расположенными симметрично приемнику, когерентных радиоволн с равными амплитудами, но противоположными фазами, и прием отраженных от неоднородностей среды радиоволн. Данный способ обеспечивает уничтожение волн просачивания и волн, отраженных от горизонтально-слоистых неоднородностей геологической среды. Недостатками данного способа являются сложность конструкции из-за применения дополнительного источника излучения и невозможность получения полной информации о структурных особенностях геологической среды. Кроме того, применение данного способа в сложной геологической обстановке ограничено в силу необходимости достижения равенства амплитуд и противофазности сигналов от двух источников излучения.
Наиболее близким к заявляемому способу по технической сущности и достигаемому результату является способ наземного радиоволнового зондирования (Томилин В.К., Лаптев М.М., Некрасов Э.М., Жариков А.А., Астафьев Г.П. Опыт применения наземного радиоволнового зондирования на золоторудном месторождении. //Геологическое изучение и использование недр. Информационный сборник, 1996, N 5, с. 40-43). В известном способе используется один излучатель радиосигнала и один приемник в вариантах зондирования и профилирования. Измерения приемником амплитудных значений напряженности электромагнитного поля, создаваемого излучателем, проводится при одностороннем смещении приемника относительно неподвижного на каждой точке зондирования излучателя. Результаты измерений по профилю представляются в виде двумерной матрицы, дискретность которой определяется методическими параметрами измерений и зависит от требуемой детальности получения информации. Такая матрица идентична геоэлектрическому разрезу и визуализирует распределение в разрезе по горизонтали и вертикали радиоволновых и петрофизических параметров геологической среды. Недостатком известного способа является то, что в нем не предусмотрено выделение отраженного от неоднородностей геологической среды сигнала из совокупного сигнала принимаемого приемником в реальных геологических условиях. Т.е. известный способ обладает низкой помехоустойчивостью и невысокой информативностью.
Целью изобретения является повышение помехоустойчивости и информативности радиоволновых исследований.
Поставленная цель достигается тем, что в предлагаемом способе наземного радиоволнового зондирования, включающем размещение излучателя и приемника вдоль линии разноса на свободной поверхности геологической среды, дистанционное зондирование, точечные измерения напряженности поля радиоволн, отраженных от неоднородностей геологической среды, профилирование, дополнительно в каждом пункте измерения производят два измерения напряженности поля, соответственно, при ориентации излучателя вдоль, а приемника по нормали к линии разноса, и при ортогональной ориентации излучателя и приемника, по поляризационным параметрам
определяют наличие и пространственное положение объекта поиска и определяют границы залегания объекта поиска по формулам
где hв и hн - глубины залегания, соответственно, верхней и нижней кромок объекта поиска;
Rв и Rн - верхний и нижний, соответственно, разносы зондирования, в пределах которых выделяется объект поиска;
f - частота измеряемого поля;
- модуль комплексной диэлектрической проницаемости среды.
Указанные признаки существенны, так как позволяют выделить отраженный от неоднородностей геологической среды сигнал из совокупного сигнала, принимаемого приемником в реальных геологических условиях, что позволяет повысить помехоустойчивость и информативность предлагаемого способа. Это, в свою очередь, позволяет обнаружить и геометризировать объект поиска с более высокой точностью.
Предлагаемый способ наземного радиоволнового зондирования осуществляется следующим образом. Излучатель и приемник (фиг.1) радиоволн размещают на свободной поверхности геологической среды. Антенну (фиг.1а) излучателя 1 ориентируют вдоль линии 3 разноса, а антенну 2 приемника по нормали к линии 3 разноса и производят первое измерение напряженности электрической составляющей поля. Затем изменяют ориентировку антенн на ортогональную (фиг. 1б) и производят второе измерение напряженности электрической составляющей поля. Такие операции выполняются на каждом разносе и в каждом пункте размещения.
По двум измеренным значениям напряженности электрической составляющей поля вычисляются поляризационные параметры P
Повышение помехоустойчивости радиоволновых измерений путем расположения излучателя и приемника на свободной поверхности геологической среды подтверждено экспериментально по спаду поля при удалении приемника в свободное пространство (фиг. 2). При таком расположении антенн излучателя и приемника сигнал распространяется через породный массив в два и более раз в зависимости от электромагнитных свойств среды, превосходящий по уровню сигнал в свободном пространстве, что обеспечивает получение практически не искаженной информации, характеризующей электромагнитные особенности геологической среды и ее неоднородность.
Повышение помехоустойчивости и информативности достигается также тем, что измерения напряженности поля выполняют ортогонально ориентированными излучающей и приемной антеннами, в результате чего минимизируется прямая связь между излучателем и приемником и усиливается проявление отраженного от неоднородности среды сигнала, а также тем, что в поляризационных параметрах P
название | год | авторы | номер документа |
---|---|---|---|
Способ объемной радиоволновой геоинтроскопии горных пород в межскважинном пространстве | 2019 |
|
RU2710874C1 |
Способ аэроэлектроразведки с применением легкого беспилотного летательного аппарата | 2020 |
|
RU2736956C1 |
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ | 2012 |
|
RU2544260C2 |
СПОСОБ ПРОСТРАНСТВЕННОЙ ЧАСТОТНО-ВРЕМЕННОЙ ГЕОЭЛЕКТРОРАЗВЕДКИ (FTEM-3D) | 2010 |
|
RU2446417C2 |
Способ наземной разведки нефтяных месторождений посредством радиоволнового выявления аэроионных аномалий над залежами нефти | 2018 |
|
RU2705756C1 |
СПОСОБ И СИСТЕМА РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМНЫХ НЕДР | 2009 |
|
RU2436130C2 |
СПОСОБ РАДИОВОЛНОВОГО ЗОНДИРОВАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2152060C1 |
СПОСОБ ПОИСКОВ И РАЗВЕДКИ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ | 2004 |
|
RU2265235C1 |
СПОСОБ ГЕОЭЛЕКТРОРАЗВЕДКИ | 2009 |
|
RU2411549C1 |
СПОСОБ РАДИОВОЛНОВОГО МЕЖСКВАЖИННОГО ПРОСВЕЧИВАНИЯ | 1993 |
|
RU2084930C1 |
Изобретение основано на отражении радиоволн от природных и техногенных объектов, расположенных в геологической среде, и состоит в измерении напряженности электрической составляющей поля с помощью взаимно ортогональных антенн излучателя и приемника радиоволновой установки. Для повышения помехоустойчивости и информативности при профилировании и зондировании в каждом пункте и при каждом разносе установки выполняются два измерения с ортогональным поворотом антенн излучателя и приемника. По соотношению измеренных величин судят о наличии, пространственном положении и границах залегания объекта поиска. 4 ил.
Способ наземного радиоволнового зондирования, включающий размещение излучения и приемника вдоль линии разноса на свободной поверхности геологической среды, дистанционное зондирование, точечные измерения напряженность поля радиоволн, отраженных от неоднородностей геологической среды, профилирование, отличающийся тем, что в каждом пункте измерения производятся два измерения E
определяют наличие и пространственное положение объекта поиска и определяют границы залегания объекта поиска по формулам
где hв и hн - глубины залегания, соответственно, верхней и нижней кромки объекта поиска;
Rв и Rн - верхний и нижний, соответственно, разносы зондирования, в пределах которых выделяется объект поиска;
f - частота измеряемого поля;
- модуль комплексной диэлектрической проницаемости среды.
Авторы
Даты
1998-06-10—Публикация
1997-11-10—Подача