Изобретение относится к ветроэлектрическим установкам (ВЭУ) малой мощности. Изобретение может быть использовано при проектировании и изготовлении ВЭУ.
В ВЭУ малой мощности широко используются синхронные генераторы с возбуждением от постоянных магнитов. Конструктивно такие установки состоят из ветроколеса с несколькими лопастями, соединенного непосредственно или через редуктор с осью генератора. На оси генератора собран ротор, состоящий, как правило, из закрепленных в магнитопроводе постоянных магнитов. Ротор вращается внутри статора, состоящего из пакета с пазами и уложенной в них обмотки, однофазной или трехфазной.
Особенностью магнитоэлектрического генератора является прямая зависимость выходных параметров (напряжения и частоты) от скорости вращения.
В связи с нестабильностью ветрового потока наведенная в обмотке ЭДС имеет переменную частоту. Устойчивая работа потребителей с ВЭУ малой мощности возможна только при наличии буферного устройства (аккумуляторной батареи). Аккумуляторная батарея выполняет функции накопителя энергии и стабилизатора напряжения путем увеличения снимаемой мощности за счет роста тока (без аккумулятора на нагрузке растут одновременно ток и напряжение).
Один из существенных недостатков ВЭУ малой мощности заключается в невозможности использования энергии в широком диапазоне ветров. Известны ВЭУ (ветрогенератор SWIAB 065 фирмы Swedish Windpawer AB-SWIAB; ABE-500, AC-500, AC-750 фирмы "ABE Моравна" г. Брно и "Аэрокрафт" г. Либерец, Чехословакия, ВEТЭН-0,16, Рыбинский завод приборостроения, УВЭ-300-2, ЦНИИ "Электроприбор" г. Санкт-Петербург), в которых номинальная мощность достигается при ветрах 8-10 м/с. При слабых ветрах 1,5-3,5 м/с скорость генератора недостаточна для осуществления заряда аккумулятора. В то же время в ряде регионов страны именно этот диапазон преобладает в розе ветров. Попытки снизить начало заряда до скорости n0, соответствующей скорости ветра 1,5-3 м/с, за счет обмоточных данных генератора приводят к снижению номинальной мощности (срезается верхняя часть нагрузочной характеристики вследствие более раннего проявления размагничивающей реакции якоря на скоростях 8-12 м/с).
Например, в установке C-100-12, описанной в монографии Heinz Schulz "Kleine Windkpaftanlagen", 2-е повторное издание, 1993 г. ISB N 3-922964-31-1 Okobuch Verlag, Stanfen bei Freiburg, стр. 21, 41, начало заряда аккумулятора осуществлено при скорости ветра ≈ 1,5 м/с. Однако при ветрах 5-10 м/с отдаваемая мощность значительно ниже, чем в аналогичной ей установке УВЭ-200 разработки ЦНИИ "Электроприбор", С.-Петербург.
За аналог принята установка УВЭ-300-2, 1991, которая развивает мощность 300 Вт на скорости генератора nн = 600 об/мин (при ветре 9 м/с), максимальную мощность 450 Вт на скорости nмакс = 1000 об/мин. Начальный зарядный ток аккумулятора обеспечивается на скорости n1 = 250 об/мин (при ветре 3,5 м/с).
Для решения задачи расширения полезного ветрового диапазона работоспособности ВЭУ в данном изобретении предлагается установить двухобмоточный генератор, выдающий зарядное напряжение при двух значениях скорости вращения ветроколеса n0 и n1.
Сущность этого устройства заключается в следующем. В статоре генератора наряду с основной обмоткой w1 предусматриваются пазы под закладку дополнительной обмотки w2. При этом выполняется условие выбора зубцов статора Zст и ротора Zр, не имеющих общего кратного делителя, а также независимости расположения секций каждой из обмоток под полюсами ротора.
Соотношение витков в фазах обмоток выбирается в обратной пропорции к скоростям, при которых должно обеспечиваться зарядное напряжение:
w2/w1 = n1/n0 (1).
Следовательно, в диапазоне скоростей генератора от n0 до n1 зарядный ток аккумулятора поступает с дополнительной обмотки через отдельный выпрямитель. В дальнейшем при n > n1 обе обмотки работают впараллель каждая через свой выпрямитель. Независимо от того, что полюсами ротора в них наводится разная ЭДС, стабилизатором напряжения служит аккумулятор.
На фиг. 1 приведена схема включения обеих 3-фазных обмоток генератора через собственные выпрямители на аккумулятор. Поскольку из генератора конструктивно выходит 6 концов статора, мостовые схемы двухполупериодных выпрямителей целесообразно монтировать в корпусе генератора (или располагать рядом), с тем чтобы передающий кабель ВЭУ имел меньшее число проводов (в приведенном варианте кабель двухжильный).
Опасность перегрузки дополнительной обмотки w2 по плотности тока Δ на высоких скоростях генератора устраняется размагничивающей природой реакции якоря.
При вращении полюсов ротора в зоне секции wC2 за счет реакции якоря происходит их кратковременное размагничивание, чем достигается стабилизация тока I2 на более ранней стадии. Учитывая, что с основной и дополнительной обмоток поочередно взаимодействуют магниты ротора с одинаковой коэрцитивной силой, уровень стабилизированных токов обмоток определится условием:
I1wc1= I2wc2 ⇒ I1w1/q1= I2w2/q2
Если принять стабильным напряжение на аккумуляторе, из последнего условия вытекает выражение, приведенное в формуле изобретения для выбора соотношения числа пазов на полюс и фазу обмоток
Этим условием обеспечивается требуемое распределение мощностей между обмотками, не приводящее к тормозящим моментам, превышающим вращающие моменты ветропривода в диапазоне скоростей от n0 до nн.
Нагрузочные характеристики предлагаемой ВЭУ и прототипа приведены на фиг. 2 и отличаются наличием полезной мощности на участке n0 - n1 (заштрихованная часть характеристики), согласованной с вращающими моментами ветроколеса. Поскольку малые ветра (2-5) м/с являются в ряде регионов преобладающими, появление дополнительной мощности P2 в зоне низких скоростей генератора существенно повышает эксплуатационно-энергетические характеристики ВЭУ. В то же время по предельной мощности такая ВЭУ не уступает прототипу, т. к. обе обмотки в номинальном режиме работают на нагрузку одновременно (параллельно), тем самым полезно используется весь объем пазов статора. Следовательно, предложенное изобретение позволяет расширить ветровой диапазон ВЭУ вследствие качественно новой нагрузочной характеристики.
В качестве примера на фиг. 3 приведена схема 3-фазной обмотки статора тихоходного двухдиапазонного синхронного генератора типа ГСПМ-300, имеющего по аналогии с прототипом число полюсов ротора 2р=16 и число зубцов на статоре Zст = 21. Основная обмотка имеет по 5 секций в фазе (на 2 меньше, чем в прототипе):
w1 = q1wc1 = 5,34 = 168
Освободившиеся 2 паза занимает дополнительная обмотка:
w2 = q2wc2 = 2,120 = 240
При таком соотношении витков начало заряда обеспечивается на скорости вращения в ≈ 1,5 раза ниже:
Распределение мощностей между обмотками (или кратность токов) определится по выражению (2):
На фиг. 4 приведены векторные диаграммы ЭДС обеих обмоток, которые построены для случая совпадения полюса ротора с осью секции wс1 первого паза статора (1-я фаза основной обмотки). Угловые положения ϕwci последующих секций wci определяются по масштабу зубцового деления статора, выраженному в электрических градусах полюсов ротора
и приведены в таблице.
Тот факт, что фазные ЭДС дополнительной и основной обмоток образуют 3-фазную систему векторов (с незначительным перекосом), подтверждает возможность реализации предложенного устройства в многополюсном генераторе с постоянными магнитами.
Рассмотрим энергетические характеристики, данные в примере двухобмоточного генератора. Коэрцитивная сила магнитных полюсов, изготовленных из феррита бария 22БА-220, составляет Hc ≈ 2200 А/см. При ширине магнита bM = 0,8 см его частичное размагничивание будет происходить под каждой секцией дополнительной обмотки статора при токе I2 = 3,2 А (ток стабилизации). Реакция якоря при этом составит намагничивающую силу
В то время как такая реакция якоря от основной обмотки возникнет при токе
Таким образом, предельной суммарный ток от генератора составит
Iзар = I1 + I2 = 14,7 А (≈ 450 Вт),
что эквивалентно прототипу (фиг. 2). Следовательно, расширение ветрового диапазона ВЭУ предложенным путем не ухудшает ее энергетических характеристик, а также не приводит к перегреву статора генератора.
название | год | авторы | номер документа |
---|---|---|---|
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1995 |
|
RU2115017C1 |
Система управления ветрогенератором | 2021 |
|
RU2787630C1 |
Ветроэлектрическая установка с инерционным аккумулятором энергии | 1980 |
|
SU951626A1 |
ВЕТРОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА И ОПОРА | 2005 |
|
RU2327056C2 |
АВТОНОМНОЕ УСТРОЙСТВО ДЛЯ ОТОПЛЕНИЯ ЖИЛОГО ИЛИ ПРОИЗВОДСТВЕННОГО ЗДАНИЯ | 1999 |
|
RU2158849C2 |
ВЕТРОГЕНЕРАТОР | 1999 |
|
RU2168062C1 |
АВТОМАТИЧЕСКАЯ ВЕТРОЭЛЕКТРОУСТАНОВКА | 1996 |
|
RU2132483C1 |
ГЕНЕРАТОР С ПРЯМЫМ ПРИВОДОМ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ ДЛЯ РАЙОНОВ СУРОВОГО КЛИМАТА | 2017 |
|
RU2673334C2 |
Ветроэнергетическая установка | 2021 |
|
RU2770526C1 |
Ветроэнергетическая установка | 2016 |
|
RU2615564C1 |
Использование: изобретение относится к ветроэлектрическим установкам малой мощности и может быть использовано при их разработке и проектировании. Сущность изобретения: предлагается ветроэлектрическая установка, в которой статор электрического генератора содержит две обмотки с числом витков в фазах w1 и , каждая из которых соединена с аккумулятором через отдельный выпрямитель, причем их секции разнесены по пазам в пространстве, образуя независимые полюса статора, а количество секций на полюс и фазу выбирается из соотношения
где n0, n1 - скорости вращения ветроколеса, при которых обеспечивается напряжение начального заряда аккумуляторных батарей соответственно от обмоток w2 и w1, q1, q2 - количество секций обмоток на полюс и фазу, p1, p2 - полезные мощности обмоток генератора. Предложенное устройство позволяет расширить рабочий ветровой диапазон ветроустановки без снижения ее энергетических характеристик. 1 табл., 4 ил.
Ветроэлектрическая установка, состоящая из ветроколеса, электрического генератора с постоянными магнитами и электрического аккумулятора, отличающаяся тем, что статор электрического генератора содержит две обмотки с числом витков в фазах w1 и w2= w1(n1/no), каждая из которых соединена с аккумулятором через отдельный выпрямитель, причем секции разнесены по пазам в пространстве, образуя независимые полюса статора, а количество секций на полюс и фазу выбирается из соотношения
где n0, n1 - частоты вращения ветроколеса, при которых обеспечивается напряжение начального заряда аккумуляторных батарей соответственно от обмоток w2 и w1;
q1, q2 - количество секций обмоток на полюс и фазу;
P1, P2 - полезные мощности обмоток генератора.
ТКАЦКИЙ СТАНОК | 1920 |
|
SU300A1 |
Описание | |||
- Л.: ЦНИИЭлектроприбор , 1991. |
Авторы
Даты
1998-07-10—Публикация
1996-01-19—Подача