Изобретение относится к области ракетной техники и учитывается все возрастающие требования по повышению совершенства конструкции ракетных двигателей и надежности их работы.
Известна конструкция ракетного двигателя твердого топлива [1], содержащая металлическую камеру сгорания с передним днищем и сопловым блоком, воспламенительное устройство, заряд и уплотнительный узел.
Данная конструкция двигателя надежно обеспечивает его работу, так как материал камеры сгорания под действием внутреннего давления газов работает в области упругих деформаций, обеспечивая прочность и герметичность конструкции. Однако такой двигатель имеет, по сравнению с двигателем из композиционных материалов, большую пассивную массу, которая значительно снижает коэффициент качества двигателя, характеризующий его совершенство.
Известен ракетный двигатель твердого топлива [2], содержащий камеру сгорания с сопловым раструбом и опорой из композиционного материала, размещенный в ней вкладной заряд твердого топлива с осевым каналом, воспламенитель, смонтированный на переднем днище, закрепленным в металлическом шпангоуте, отличающийся тем, что он снабжен опертым на заряд твердого топлива подпружиненным поршнем с центральным отверстием, а в корпусе воспламенителя выполнен глухой осевой канал, в котором расположен поршень, при этом сопловый патрубок снабжен металлической воронкой с пружинным хвостовиком со стороны камеры сгорания, а между воронкой и сопловой опорой размещена эластичная прокладка, причем соединение переднего днища и металлического шпангоута выполнено в виде уложенных между зубьев спиральной кольцевой намоткой стеклонитей, а зубья выполнены пирамидальной формы, стороны оснований которых расположены под углом к углу намотки стеклонитей.
Однако и данная конструкция ракетного двигателя твердого топлива не обеспечивает надежную работу двигателя, так как заделка сопловой опоры в корпусе двигателя не исключает ее перемещение (подвижку) по оси двигателя от воздействия рабочего давления пороховых газов, что наоборот приведет к увеличению эксцентриситета двигателя, что недопустимо.
Задачей предлагаемого изобретения является повышение надежности работы ракетного двигателя твердого топлива из композиционного материала, за счет исключения перемещения (подвижки) вдоль оси двигателя сопловой опоры и ее разрушение от действия рабочего давления пороховых газов при работе двигателя.
Это достигается тем, что в ракетном двигателе твердого топлива сопловая опора выполнена в виде металлического конуса, плавно переходящего в цилиндр, при этом радиус перехода составляет 0,4 - 0,6 наружного диаметра цилиндра, а внутренняя поверхность конуса выполнена направленными под углом друг к другу кольцевыми зубьями, образующими замок, и заармирована эластичным теплозащитным материалом, причем эластичная прокладка установлена между корпусом и конусной частью сопловой опоры, и выполнена из фенольно-каучуковой клеящей пленки.
Сущность предлагаемого изобретения заключается в том, что данная конструкция ракетного двигателя твердого топлива обеспечивает высокую надежность работы двигателя и исключает перемещение (подвижку) и разрушение сопловой опоры, от воздействия рабочего давления пороховых газов при работе двигателя.
На фиг. 1 приведена предлагаемая конструкция ракетного двигателя твердого топлива, где 1 - корпус двигателя из композиционного материала; 2 - металлическая воронка с хвостовиком; 3 - сопловая опора; 4 - конусная часть сопловой опоры; 5 - кольцевые зубья; 6 - теплозащитный материал; 7 - эластичная прокладка; 8 - спиральные силовые слои нитей из композиционного материала.
Вматывание сопловой опоры 3, состыкованной посредством хвостовика с металлической воронкой 2 и армированной эластичный теплозащитным материалом 6 в корпусе двигателя 1, осуществляется следующим образом. На подготовленную (зачищенную и обезжиренную) наружную поверхность конусной части 4, сопловой опоры 3 и воронку 2, установленную на вращающейся оправке, укладывают эластичную прокладку 7 из фенольно-каучуковой клеящей пленки, предварительно смоченную ацетоном для склеивания, затем производят заматывание композиционным материалом 8 сопловой опоры 3 в корпусе двигателя 1, после намотки корпус двигателя 1 проходит полимеризацию термообработкой. Радиус перехода конической поверхности сопловой опоры в цилиндрическую составляет 0,4 - 0,6 наружного диаметра цилиндра, эта зависимость получена экспериментально и представлена на фиг. 2, где N - отношение числа положительных опытов к общему количеству проведенных опытов; R - радиус перехода конической поверхности в цилиндрическую.
Из графика видно, что если сопловая опора выполнена с R < 0,4 наружного диаметра цилиндра, то ухудшаются условия укладки слоев композиционного материала, т.е. под ними образуются пустоты, повышается напряжение в материале сопловой опоры из-за неравномерного распределения нагрузки от натяжения слоев композиционного материала, что приводит к трещинам сопловой опоры при работе двигателя от воздействия внутреннего давления пороховых газов, что недопустимо.
При условии R > 0,6 наружного диаметра цилиндра, то при действии внутреннего давления пороховых газов сопловая опора имеет возможность перемещаться вдоль оси двигателя, что приведет к нарушению герметичности и прогару двигателя, а также к увеличению эксцентриситета, что недопустимо.
Применение в конструкции двигателя эластичной прокладки из фенольно-каучуковой клеящей пленки, установленной между силовыми слоями композиционного материала и конусной частью сопловой опоры, улучшает адгезию между ними и исключает осевое перемещение сопловой опоры при нагружении двигателя внутреннего давления. Внутренняя поверхность конуса сопловой опоры выполнена в виде замка с двумя направленными под углом друг к другу кольцевыми зубьями и предназначена для лучшего удержания эластичного теплозащитного материала при армировании сопловой опоры.
Источники информации
1. Фахутдинов А.Х., Комерников А.В. Конструкция и проектирование ракетных двигателей твердого топлива. Учебное пособие для вузов. - М.: Машиностроение, 1987, с.6-9, рис. 1.4.
2. Патент России N 2053401, F 02 K 9/08, опубл. 27.01.96, БИ N 3 (II ч), с.250-251.
название | год | авторы | номер документа |
---|---|---|---|
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1999 |
|
RU2153092C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1993 |
|
RU2053401C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1997 |
|
RU2133369C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1995 |
|
RU2105181C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1992 |
|
RU2015391C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1996 |
|
RU2122135C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 2000 |
|
RU2189483C2 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1999 |
|
RU2156374C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1994 |
|
RU2088785C1 |
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА | 1997 |
|
RU2133368C1 |
Ракетный двигатель твердого топлива содержит сопловую опору, выполненную в виде металлического конуса, плавно переходящего в цилиндр, при этом радиус перехода составляет 0,4 - 0,6 наружного диаметра цилиндра. Внутренняя поверхность конуса выполнена с двумя направленными под углом друг к другу кольцевыми зубьями, образующими замок, и заармирована эластичным теплозащитным материалом. Ракетный двигатель также содержит корпус из композиционного материала, металлическую воронку с хвостовиком и эластичную прокладку, которая установлена между корпусом и конусной частью сопловой опоры и выполнена из фенольно-каучуковой клеящей пленки. В результате повышения надежности работы ракетного двигателя за счет исключения перемещения вдоль оси двигателя сопловой опоры и ее разрушения от действия рабочего давления пороховых газов при работе двигателя. 1 з.п. ф-лы, 2 ил.
RU, 2053401 С1, 27.01.96 | |||
RU, 2015391 С1, 30.06.94 | |||
FR, 2466627 А, 10.04.81 | |||
EP, 0270412 А, 08.06.88 | |||
US, 4852347 А, 01.08.89 | |||
Фахутдинов А.Х | |||
и др | |||
Конструкция и проектирование ракетных двигателей твердого топлива, -М.: Машиностроение, 1987, с | |||
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1998-08-20—Публикация
1997-04-10—Подача