Изобретение относится к энерготехнологическим котлам, применяемым в целлюлозно-бумажной промышленности для сжигания сульфатных щелоков с одновременной регенерацией химикатов: может быть использовано в энергоплавильных агрегатах цветной металлургии, в частности, фъюминг процессах.
Известны энерготехнологические котлы (ЭТК), содержащие барабан-сеперетор, к паровому пространству которого подключен пароперегреватель, топку из водоохлаждаемых газоплотных экранов, в нижней части которой расположена плавильная камера [1].
Известна также конструкция котла, в которой стенки газохода образованы парогенерирующими трубами с заключенными в них опускными водоподводящими трубами [2].
Недостатком известных ЭТК является взрывоопасность вследствие вероятного попадания котловой воды в расплав солей на поде топки при разуплотнении экранов.
Наиболее близкой к заявляемой является конструкция ЭТК, в которой водяные экраны соприкасающиеся с плавом, имеют паровое охлаждение с установкой промежуточных теплообменников, отводящих избыточное тепло перегреваемого пара к воде [3].
Недостатком подобной схемы является ее усложнение, поскольку требуется установка специальных теплообменников, наличие специального подвода охлаждаемой воды, а также соответствующей запорно-регулирующей арматуры, что, в целом, также снижает надежность.
Применение для стенок топки пароохлаждаемых экранов, внутри труб которых проходят водоохлаждаемые трубы - по типу "труба в трубе", - продолжением их после ступенчатого расширения являются газоплотные экраны камеры охлаждения, тем самым снижается вероятность попадания воды в расплав солей на поде топки в случае разуплотнения экранов, тем самым повысить надежность котла в целом. Кроме того использование водоохлаждаемых труб в пределах топки котла с увеличенной поверхностью, например, оребрением до размера
где
Sw - поверхность водоохлаждаемой трубы;
Sp - поверхность пароохлаждаемой трубы;
Kp - коэффициент теплопередачи тракта "газ-пар";
Kw - коэффициент теплопередачи тракта "пар-вода";
Δtp - градиент температур пароохлаждаемая труба - пар;
Δtw - градиент температур пар - водоохлаждаемая труба.
позволит исключить высокотемпературную коррозию, возникающую, например, в содорегенерационных котлах, благодаря стабилизации температуры пара, тем самым также повысить ее надежность.
Включение пароохлаждаемого тракта топки в рассечку между паровым пространством барабана- сепаратора и пароперегревателя позволяет снизить металлоемкость котла в целом за счет исключения специальных пароохладителей.
На чертеже схематично изображен ЭТК.
ЭТК содержит барабан-сепаратор 1, радиационно-конвективную шахту 2, включающую топку 3 и камеру охлаждения 4, огражденную экранами 5 и 6. Под топки 3 выполнен из пароперепускных труб 7 между камерами 8 и 9. Часть экрана в пределах топки выполнена по типу "труба в трубе" 10; внутренние водоохлаждаемые трубы 11 представляют собой часть газоплотного экрана, имеют ступенчатое расширение при переходе от топки 3 к камере охлаждения 4, внешние пароохлаждаемые трубы 12, из которых организованы топочные экраны, расположенные между камерами 8, 9 и промежуточными камерами 13. ЭТК снабжен пароперегревателем 14 и байпасом с регулируемым клапаном 15.
Работает конструкция следующим образом.
Насыщенный пар из барабана-сепаратора 1 поступает в камеру 8 и далее направляется в кольцевое пространство между трубами 11 и 12 экранов 5 и 6. причем часть пара проходит через пароперепускные трубы 7 пода топки 3 к камере 9. Практически насыщенный пар из камер 13 направляется к пароперегревателю 14, перегревается и направляется потребителю. Регулирование температурного режима охлаждения топки 3 может осуществляться регулирующим клапаном 15. Водоохлаждаемые трубы 11 в пределах топки 3 в системе "труба в трубе" выполняют роль пароохладителя в кольцевом зазоре труб 12 и 11. Поскольку теплообменная (наружная) поверхность водоохлаждаемой трубы 11 может быть равна внутренней поверхности пароохлаждаемой трубы 12, например, путем оребрения, то температура пара в зазоре меняется слабо.
Заявляемая конструкция не требует специальных холодильников и специальных потоков охлаждающей воды для охлаждения пара, что повышает надежность конструкции в целом, пароохлаждаемая топка снижает взрывоопасность котла в случае разуплотнения экранов, уменьшаются металлоемкость конструкции, материальные затраты и затраты на обслуживание.
название | год | авторы | номер документа |
---|---|---|---|
КОТЕЛ | 1996 |
|
RU2122678C1 |
ВЕРТИКАЛЬНЫЙ ДВУХБАРАБАННЫЙ КОТЕЛ | 1994 |
|
RU2096679C1 |
КОТЕЛ | 2000 |
|
RU2191324C2 |
Вертикальный двухбарабанный котел | 2001 |
|
RU2219434C2 |
КОТЕЛ | 1992 |
|
RU2037090C1 |
КОТЕЛ | 2000 |
|
RU2193729C2 |
ВЕРТИКАЛЬНЫЙ КОТЕЛ | 1992 |
|
RU2040730C1 |
КОТЕЛ-УТИЛИЗАТОР | 1992 |
|
RU2051311C1 |
ПАРОГАЗОВАЯ УСТАНОВКА | 1995 |
|
RU2100619C1 |
ПОВЕРХНОСТНЫЙ ПАРООХЛАДИТЕЛЬ | 1993 |
|
RU2047045C1 |
Изобретение относится к энерготехнологическим котлам, применяемым в целлюлозно-бумажной промышленности для сжигания сульфатных щелоков и может быть использовано в энергоплавильных агрегатах цветной металлургии. Котел содержит барабан-сепаратор 1, радиационно-конвективную шахту 2 включающую топку 3 и камеру охлаждения 4, огражденную экранами 5 и 6. Под топки 3 выполнен из пароперепускных труб 7 между камерами 8 и 9. Часть экрана в пределах топки выполнена по типу "труба в трубе" 10; внутренние водоохлаждаемые трубы 11 представляют собой часть газоплотного экрана, имеют ступенчатое расширение при переходе от топки 3 к камере охлаждения 4; внешние пароохлаждаемые трубы 12, из которых организованы топочные экраны, проложены от камер 8 и 9 и замыкаются на промежуточные камеры 13. Котел снабжен пароперегревателем 14 и байпасом с регулируемым клапаном 15. Изобретение позволяет снизить металлоемкость, вследствие исключения специальных пароохладителей. 3 з.п. ф-лы, 1 ил.
где Sp - площадь поверхности пароохлаждаемой трубы;
Kp - коэффициент теплопередачи тракта газ - пар;
Kw - коэффициент теплопередачи тракта пар - вода;
Δtp - градиент температур пароохлаждаемая труба - пар;
Δtw - градиент температур пар - водоохлаждаемая труба.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Содорегенерационный котел | 1971 |
|
SU706644A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Паровой котел | 1981 |
|
SU992898A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Котлы-утилизаторы и энерготехнологические котлы | |||
Отраслевой каталог | |||
- М.: НИИЭинформэнергомаш, 1985, с.36. |
Авторы
Даты
1998-08-20—Публикация
1995-09-04—Подача