ОДНОКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ Российский патент 1998 года по МПК F02K9/68 

Описание патента на изобретение RU2118685C1

Изобретение относится к космической технике и может быть использовано при создании однокомпонентных жидкостных ракетных двигателей.

Известен однокомпонентный термокаталитический двигатель (Беляев Н. М., Уваров Е. И. Расчет и проектирование реактивных систем управления космических летательных аппаратов. М.: Машиностроение, 1974, рис.3.27, с. 111), содержащий основную и пусковую камеру с катализатором, узлы впрыска основного и пускового расхода топлива, магистрали подвода топлива и сопло.

В указанном двигателе время подготовки к запуску сокращается за счет быстрого разогрева основной камеры высокотемпературными продуктами разложения топлива, поступающими из пусковой камеры.

Известен однокомпонентный жидкостный ракетный двигатель, принятый за прототип, содержащий камеру разложения топлива с днищем с размещенным внутри нее узлом распределения топлива, состоящим из пористого каталитического материала, электронагреватель, проницаемый каталитический пакет, сопло и магистраль подачи топлива (патент США N 4583361, кл. F 02 C 3/20). Электронагреватель обеспечивает стартовый разогрев каталитического пакета через наружную цилиндрическую стенку камеры разложения, вдоль которой двигается впрыскиваемое топливо.

Основным недостатком такой конструкции является локализация стартового испарения и разложения топлива в пристеночном слое каталитического пакета, что приводит к проскоку в центре камеры жидкого топлива через сопло без разложения в момент запуска двигателя и к захолаживанию центральной зоны пакета в установившемся режиме его работы. Это снижает эффективность однокомпонентного ЖРД и существенно ограничивает расходонапряженность каталитического пакета.

При создании изобретения решались задачи повышения расходонапряженности каталитического пакета и соответствующего снижения габаритов, массы и энергопотребления однокомпонентного ЖРД.

Поставленные задачи решены за счет того, что в известном двигателе, содержащем камеру разложения топлива с днищем с размещенным внутри нее узлом распределения топлива, состоящим из пористого каталитического материала и электронагревателя, проницаемый каталитический пакет, сопло, магистраль подачи топлива, согласно изобретению электронагреватель расположен по внешней поверхности узла распределения топлива, размещенного (заглубленного) в объеме проницаемого каталитического пакета, причем по оси узла распределения топлива выполнен глухой канал, торцевая поверхность узла выполнена непроницаемой, а стенки глухого канала не более чем на 1/3 длины узла распределения топлива от днища камеры выполнены непроницаемыми.

Расположение электронагревателя по внешней поверхности узла распределения топлива и размещение (заглубление) узла в объеме проницаемого каталитического пакета, обеспечивает локализацию области максимальной теплоотдачи нагревателя в зоне впрыска. Эта область обеспечивает быстрый нагрев топлива в зоне впрыска и снижает длительность подготовительных процессов термокаталитического разложения топлива.

Размещение узла распределения топлива в объеме проницаемого каталитического пакета также обеспечивает объемное смачивание топливом пакета катализатора при запуске и одновременное заполнение всего внутрипорового объема, необходимое для обеспечения быстродействия двигателя.

Наличие в узле распределения топлива соосного с ним глухого канала с проницаемыми стенками обеспечивает подачу топлива в радиальном к оси узла направлении, равномерное распределение топлива от центра к периферии и создает условия для существенного улучшения процесса термокаталитического разложения топлива.

Выполнение торцевой поверхности узла распределения топлива непроницаемой обеспечивает создание демпфирующего устройства в виде проницаемого с боковых сторон пакета. Это демпфирующее устройство обеспечивает плавное гашение осевой составляющей скорости подачи жидкого топлива и снижает расходонапряженность потока в осевом направлении до значений предотвращающих проникновение неразложившего топлива в сопло двигателя. Таким образом достигается безударный разворот потока и, поэтому снижаются колебания давления в камере разложения и обеспечивается устойчивая работа двигателя.

Выполнение стенок глухого канала не более чем на 1/3 длины узла распределения топлива от днища камеры непроницаемыми позволяет образовать в районе днища застойную зону продуктов разложения, подпитывающую и подогревающую горячими газами вновь поступающее топливо, что способствует поддержанию реакции разложения и, соответственно, увеличивает расходонапряженность пористого пакета, а также позволяет снизить теплопоток в днище камеры разложения топлива двигателя за счет тепловой изоляции днища от зоны реакции разложения и, соответственно, предотвращает термическое разложение топлива в магистрали подачи и узле распределения топлива. Выбор длины непроницаемой части глухого канала от днища камеры производится расчетно-экспериментальным путем и определяется из условия устойчивости образующегося вихря, состоящего из непрореагировавшего топлива, продуктов разложения, а также исходя из требований теплового демпфирования магистрали подачи топлива. При этом устраняется возможность взрывного разложения топлива в магистрали подачи и обеспечивается устойчивая работа двигателя во всем рабочем диапазоне, причем расходонапряженность катализатора возрастает в 3...5 раз.

Изобретение иллюстрируется чертежом. На чертеже изображен однокомпонентный жидкостной ракетный двигатель, содержащий камеру разложения топлива 1 с днищем 2 с размещенным внутри нее узлом распределения топлива 3, проницаемый каталитический пакет 9, сопло 10, магистраль подачи топлива 11. Узел 3 состоит из пористого каталитического материала 4 с выполненным вдоль оси узла глухим каналом 5 с непроницаемыми не более чем на 1/3 длины узла распределения топлива от днища камеры боковыми стенками 6. По внешней поверхности узла 3 расположен электронагреватель 7, а торцевая поверхность 8 узла 3 выполнена непроницаемой. Стрелками показано направление течения топлива и продуктов его разложения.

Двигатель работает следующим образом.

При запуске включается электронагреватель 7 и с задержкой, определяемой теплопередающими свойствами узла распределения топлива 3, в глухой канал 5 по магистрали подачи 11 подается топливо. В глухом канале 5 осевая скорость потока топлива плавно гасится на проницаемом пористом демпфере, образованном пористой торцевой стенкой глухого канала 5 и непроницаемой торцевой поверхностью 8, поток разворачивается в радиальных к оси узла направлениях и через проницаемую часть боковой стенки 6 поступает в объем пористого каталитического материала 4, мгновенно и целиком заполняя его. При этом вся передающаяся от электронагревателя 7 к пористому каталитическому материалу 4 тепловая энергия мгновенно передается топливу за счет высокой интенсивности внутрипорового конвективного теплообмена между пористой структурой каталитического материала 4 и потоком топлива и вызывает его нагрев.

Нагретое топливо при контакте с каталитической поверхностью пористого материала 4 узла распределения топлива начинает разлагаться по термокаталитической ветви реакции во внутрипоровом объеме пористого каталитического материала 4. Смесь высокотемпературных продуктов разложения и части непрореагировавшего топлива поступает из заглубленного узла распределения топлива 3 сквозь его боковые стенки в объем размещенного в камере разложения топлива 1 проницаемого каталитического пакета 8 и мгновенно его нагревает. Одновременно в области днища 2 формируется застойная зона, образованная вихрем, порожденным непроницаемой частью боковой стенки 6 глухого канала 5.

После запуска нагреватель двигателя отключается.

Поступающие по магистрали 11 следующие после запуска порции топлива вследствие возникающей высокой нагрузки на пористый каталитический материал 4 охлаждают и заливают узел распределения топлива 3 и через его проницаемые боковые стенки топливо распыляется в жидком состоянии в внутрипоровый объем проницаемого каталитического пакета 9, при этом узел распределения топлива 3 работает как узел впрыска топлива, а образующаяся застойная зона - как тепловой демпфер и естественный подавитель неустойчивости работы двигателя.

Газообразные нагретые продукты разложения топлива истекают из каталитического пакета и далее через сопло 10, создавая реактивную тягу.

Для обеспечения работоспособности двигателя в импульсных режимах и дробления поступающего в камеру разложения топлива между нагревателем и пористым каталитическим материалом располагается проницаемая оболочка, выполненная, например, из мелкоячеистой, с размером ячеи 5 мкм, металлической сетки, по п. 2 изобретения, обеспечивающая хороший тепловой контакт и мелкодисперсный распыл. Обеспечение хорошего теплового контакта в импульсных режимах позволяет поддерживать достаточную для запуска температуру каталитического материала 4 узла распределения топлива 3 за счет тепла, поступающего от проницаемого каталитического пакета 9, а мелкодисперсный распыл поступающей из узла распределения смеси - обеспечение быстродействия двигателя.

В случае применения высокотемпературного нагревного кабеля, например типа КНМСпНХ, боковые стенки узла распределения топлива образуются уложенными с зазором 0,02 - 0,1 мм витками электронагревателя для прохода топлива и продуктов его разложения.

Похожие патенты RU2118685C1

название год авторы номер документа
ОДНОКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МАЛОЙ ТЯГИ 2019
  • Вертаков Николай Михайлович
RU2721397C1
СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ И ЖИДКОСТНОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Виноградов В.Н.
  • Масленников Н.А.
  • Диденко Б.Е.
  • Мурашко В.М.
  • Нятин А.Г.
  • Кравчик А.Е.
  • Малков Ю.П.
  • Львов О.Н.
  • Стаценко А.Г.
RU2163685C2
ОДНОКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МАЛОЙ ТЯГИ 1996
  • Виноградов В.Н.
  • Стаценко А.Г.
  • Нятин А.Г.
  • Михейчик А.Л.
RU2154748C2
ОДНОКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МАЛОЙ ТЯГИ И СПОСОБ ЕГО ЗАПУСКА 1993
  • Виноградов В.Н.
  • Стаценко А.Г.
  • Лобанов Ю.Г.
  • Михейчик А.Л.
  • Нятин А.Г.
RU2096647C1
ОДНОКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МАЛОЙ ТЯГИ (ВАРИАНТЫ) 2019
  • Вертаков Николай Михайлович
  • Казаков Георгий Иванович
RU2706101C1
РАКЕТНЫЙ ДВИГАТЕЛЬ НА СЖАТОМ ГАЗЕ 1995
  • Виноградов В.Н.
  • Нятин А.Г.
RU2125176C1
УЗЕЛ ПОДАЧИ ТОПЛИВА В КАМЕРУ РАЗЛОЖЕНИЯ ОДНОКОМПОНЕНТНОГО ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ МАЛОЙ ТЯГИ 2019
  • Вертаков Николай Михайлович
RU2704521C1
ЭЛЕКТРИЧЕСКИЙ ЖИДКОСТНОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2018
  • Афанасьев Сергей Михайлович
RU2698641C1
РАКЕТНЫЙ ДВИГАТЕЛЬ ТВЕРДОГО ТОПЛИВА 1997
  • Шипунов А.Г.
  • Соколов Г.Ф.
  • Морозов В.Д.
  • Васина Е.А.
  • Махонин В.В.
RU2133369C1
ПЛАЗМЕННЫЙ ДВИГАТЕЛЬ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ 1999
  • Гопанчук В.В.
  • Козубский К.Н.
RU2152538C1

Реферат патента 1998 года ОДНОКОМПОНЕНТНЫЙ ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ

Двигатель предназначен для использования в системах управления космического аппарата на монотопливе, а также необходим при создании однокомпонентных жидкостных ракетных двигателей. Двигатель содержит камеру разложения топлива (1) с днищем (2) и с размещенным внутри него узлом распределения топлива (3). Он состоит из пористого каталитического материала (4) с выполненным вдоль оси узла глухим каналом (5) с непроницаемыми не более чем на 1/3 его длины от днища камеры боковыми стенками (6). Электронагреватель (7) расположен по внешней поверхности узла распределения топлива. Двигатель также содержит непроницаемую торцевую поверхность (8), проницаемый каталитический пакет (9), сопло (10), магистраль подачи топлива 11. Причем между нагревателем и пористым каталитическим материалом размещена проницаемая оболочка. Боковые стенки узла (3) образованы уложенными с зазором 0,02...0,1 мм витками электронагревателя. Образующаяся возле днища (2) вихревая зона создает тепловой демпфер и естественный подавитель неустойчивости работы двигателя. Газообразные нагретые продукты разложения топлива истекают через сопло (10) и создают реактивную тягу, обеспечивая при этом быстродействие при запуске и устойчивую работу двигателя, а также повышение безопасности при эксплуатации и упрощение его конструкции. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 118 685 C1

1. Однокомпонентный жидкостный ракетный двигатель, содержащий камеру разложения топлива с днищем с размещенным внутри нее узлом распределения топлива, состоящим из пористого каталитического материала и электронагревателя, проницаемый каталитический пакет, сопло, магистраль подачи топлива, отличающийся тем, что электронагреватель расположен по внешней поверхности узла распределения топлива, размещенного (заглубленного) в объеме проницаемого каталитического пакета, причем по оси узла распределения топлива выполнен глухой канал, торцевая поверхность узла выполнена непроницаемой, а стенки глухого канала не более чем на 1/3 длины узла распределения топлива от днища камеры выполнены непроницаемыми. 2. Двигатель по п.1, отличающийся тем, что между нагревателем и пористым каталитическим материалом размещена проницаемая оболочка. 3. Двигатель по п.1, отличающийся тем, что боковые стенки узла распределения топлива образованы уложенными с зазором 0,02 - 0,1 мм витками электронагревателя.

Документы, цитированные в отчете о поиске Патент 1998 года RU2118685C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Беляев Н.М., Уваров Е.И
Расчет и проектирование реактивных систем управления космических летательных аппаратов
- М.: Машиностроение, 1974, с.111, рис
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
US, патент, 4583361, кл
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 118 685 C1

Авторы

Виноградов В.Н.

Михейчик А.Л.

Нятин А.Г.

Стаценко А.Г.

Даты

1998-09-10Публикация

1996-01-25Подача