Изобретение касается способа измерения электрических напряжений и/или напряженностей электрического поля и чувствительного элемента для осуществления этого способа согласно органичительных частей формулы изобретения 1 и 8. Известные способы и соответственно используемые чувствительные элементы этого типа основываются на принципе использования линейного электрооптического эффекта различных кристаллов.
Уже известны способы измерения и чувствительные элементы для этого, основывающиеся на том принципе, что коэффициент преломления определенных, проницаемых для световых волн кристаллов можно изменять в зависимости от производимой в кристалле напряженности поля. Этот так называемый электрооптический эффект показывают, например, кристаллы из ниобата лития или дигидрофосфата калия. Два электрода, расположенные на поверхности кристаллической пластинки параллельно и на расстоянии друг от друга, присоединяют, например, для измерения напряжения к измеряемому напряжению, а обусловленное в результате этого изменение показателя преломления принимается как мера для подаваемого напряжения.
Для определения индексов преломления известны интерферометрические или поляриметрические устройства. В первом способе модулируется фаза световой волны и накладывается на контрольную фазу, что приводит к изменению интенсивности отводимой световой волны. При использовании поляриметрического устройства поляризация поляризованной световой волны изменяется в зависимости от показателя преломления, а изменение интенсивности устанавливается посредством поляризатора.
Для обоих известных устройств требуются относительно высокие технические затраты. Кроме того, проблемы реализации появляются из-за применяемых материалов. Помимо требования относительно высоких электрооптических эффектов материалов, в них наряду с чистым электрооптическим эффектом появляются соответственно как пьезоэлектрический, так и эластооптический эффект, которые вместе показывают такую же картину, что и чистый электрооптический эффект. Инерционность материала приводит затем к тому, что в зоне низких частот электрооптический эффект, с одной стороны, и пьезоэлектрический и эластооптический эффект, с другой стороны, накладываются друг на друга. Переходная зона отличается далее резонансными явлениями, вытекающими из вибраций кристаллов.
Для широкополосной системы измерения, следовательно, должно выдвигаться требование относительно исключительного использования чистого электрооптического эффект, т. е. соответствующие пьезоэлектрические - эластооптические эффекты не должны приниматься во внимание.
При поляриметрической системе такое положение вещей должно иметь место одновременно для двух коэффициентов, в то время как при интерферометрической системе достаточно одного коэффициента. В соответствии с этим в распоряжении имеются значительно больше материалов для создания широкополосной интерферометрической системы измерения, чем для широкополосной поляриметрической системы измерения. Этому противопоставляются однако значительные технологические затраты интерферометра. Для этого должны быть использованы далее интегрированно-оптические элементы конструкции, к которым должны подводиться оптическая мощность с определенным типом волны и с определенным состоянием поляризации. При практическом использовании этой технологии требуется поэтому применение сохраняющего поляризацию проводника световой волны (HiBi - волокно) с настоятельной необходимостью.
Посредством данного изобретения должна быть решена задача, заключающаяся в том, чтобы предложить способ и чувствительный элемент для осуществления этого способа, с помощью которого или с помощью которых в принципе должны быть сохранены преимущества интерферометрического способа, а именно необходимость оценки только лишь одного единственного электрооптического коэффициента. Кроме того, технические затраты должны сохраняться небольшими в результате того, что не должны использоваться ни интегрированно-оптическая технология, ни специальный проводник световой волны.
Решается эта задача посредством признаков, указанных в отличительной части формулы изобретения 1 и 8.
Данное изобретение характеризуется, в частности, тем, что световая волна посылается только через кристалл, то есть должна быть введена и отведена. Отклонение отведенной или отводимой световой волны можно устанавливать и оценивать с помощью простых средств.
Другие предпочтительные детали данного изобретения указаны в зависимых пунктах формулы изобретения и ниже поясняются более подробно на основе наглядно показанных в чертеже примеров осуществления. На рисунках показано:
Фиг. 1: вид в перспективе используемого способа согласно изобретению, присоединяемого к напряжению, кристалла; фиг. 2: вид сверху на кристалле согласно фиг. 1; фиг. 3: вид торцевой стороны кристалла согласно фиг. 1; фиг. 4: ход кривой показателя преломления n в X - направлении; фиг. 5: ход кривой напряженности поля EZ в X - направлении; фиг. 6: возможный ход кривой отклоненной световой волны; фиг. 7: расположение чувствительного элемента между двумя предусмотренными в электрическом поле шаровыми полусферами.
На фиг. 1 цифрой 1 обозначен кристалл, например из ниобата лития. Его обе поверхности - верхняя поверхность 2 и нижняя поверхность 3 - проходят в направлении X и Y - осей, а его толщина 4 - в направлении Z оси кристалла 1, как это показано с помощью системы координат. Ниже данные о координатах X-, Y- и Z - направления относятся постоянно к осям кристалла. Обе поверхности 2 и 3 снабжены соответственно парой простирающихся в Y - направлении, полосообразных электродов 5, 6 или 7, 8. При этом одна пара электродов 5, 6 противостоит другой паре электродов 7, 8 конгруентно. Обе пары электродов 5, 6 или 7,8 присоединены к источнику напряжения 9, в результате того, что соответственно диагонально противостоящие друг другу электроды 5, 8 и 6, 7 соединены с соответственно одним из полюсов 10 или 11 этого источника. Благодаря этому между электродами 5 и 7, с одной стороны, и между электродами 6 и 8, с другой стороны, образуется электрическое поле EZ в Z - направлении; однако эти электрические поля EZ соответственно подключению к источнику напряжения 9 направлены друг против друга. По определению линейного электрооптического эффекта поэтому, например показатель преломления n кристалла 1 в одном случае увеличивается, а в другом случае - уменьшается (так называемый Покель-эффект). Соответственно в зоне 12, которая, как правило, несколько больше, чем расстояние 13 между проходящими параллельно друг другу электродами 5, 6 и 7, 8 на поверхности 2 или 3 согласно фиг. 4 образуется непрерывно изменяющаяся напряженность поля с определенными градиентами напряженности поля 14 в Х - направлении. Соответственно изменяется также и коэффициент преломления n в X - направлении, и получают соответствующий градиент 15, как представлено на фиг. 4.
Одна из вертикально находящихся к Y - направлению торцовых поверхностей 16 служит для ввода поляризованной в Z - направлении световой волны 17. Точка ввода 18 в примере осуществления выбрана соосно к торцовой поверхности 16. Соответственно точка отвода 19 может быть предусмотрена на другой торцовой поверхности 20. В зависимости от желаемого результата измерения эти точки ввода и отвода 18, 19 однако могут быть выбраны или предусмотрены также на других местах кристалла 1.
Измерение напряжения (или напряженности) поля с вышеназванным расположением может осуществляться следующим образом.
При распространении поляризованной в Z - направлении световой волны 17 в положительном Y - направлении кристалла 1 появляется показатель преломления n с одним электрооптическим коэффициентом r33 (единственный в хорошем приближении независимый от частоты коэффициент ниобата лития):
n = ne - 1/2n
причем
ne = 2,200 описывает экстраупорядоченный (индекс) показатель преломления, а EZ - наружное электрическое поле вдоль Z - направления кристалла.
Если изменяется составляющая напряженности поля EZ вдоль координаты X, то показатель преломления является функцией места. Распространение света падающей в Y - направленности световой волны 17 можно тогда описать посредством уравнения Эйконала:
(gradФ(x)2) = n(x)2 (2)
с фазовой функцией Ф(x) оптической волны. Световая волна следует, таким образом, уравнению излучения
d/ds/n(x) • dr/ds/ = gradn(x) (3)
с длиной пути S вдоль светового участка или распространения лучей с радиусом-вектором r. Возможное отклонение световой волны 17 изображено на фиг. 6 штриховой или штрихпунктирной линией.
Из решения уравнения /3/ для функции места светового луча следует приближенно:
x = 1/α/•/cosh/αy/-1/ (4)
α = -1/2n
Небольшие углы отклонения ϕ можно оценивать с учетом вычисления при выходе световой волны 17' из кристалла 1 с пронизанными лучами световым участком 21 или длиной L:
ϕ = -1/2n
На примере уравнения /6/ становится ясно, что для электрооптического отклонения световой волны 17 определяющим является градиент напряженности поля EZ. Подобный ход кривой напряженности поля осуществляется посредством описанного устройства с четырьмя электродами.
В результате соответствующего ввода и отвода световой волны 17 можно получить соответственно временному ходу кривой напряженности поля, например модулированный по интенсивности оптический сигнал на единице оценки 22, что соответствует поданному на электроды 5, 6 или 7, 8 напряжению или соответствующей напряженности поля.
Ввод световой волны 17, как показано на фиг. 6, может осуществляться через соответствующий световод 23, связанный с торцовой поверхностью 16, а отвод - через световод 24, соединенный с торцовой поверхностью 24. Предпочтительно, чтобы ядро или диаметр ядра 25 предусмотренного на стороне отвода световода 24 было меньше, чем возможная область отклонения 26. В результате этого при представленном центрированном расположении световода 24 к световоду 23 можно узнать отклонение через изменение интенсивности светового потока, проникающего в световод 24.
Для измерения электрического поля можно, согласно фиг. 7, в поле 27 установить устройство из двух, в примере осуществления выполненных как шаровые полусферы эквипотенциальных поверхностей 28 и 29, и по меньшей мере из электропроводящего с одной стороны материала, между которыми - как описано - расположен вышеназванный кристалл 1. Электроды вместо источника напряжения 9 соединены с эквипотенциальными поверхностями 28, 29. При имеющемся электрическом поле 27, на эквипотенциальных поверхностях 28, 29 индицируется электрическое напряжение, представляющее собой меру для имеющейся там напряженности поля, и которое может быть измерено. Поэтому при такой системе измерения и методике измерения чувствительный элемент присоединен не к наружному напряжению или источнику напряжения так, что обусловленные в ином случае в искажения поля не могут больше появляться.
Оценка отклонения отведенной или отводимой световой волны 17' осуществляется преимущественно через фотодиод или посредством диодной строки или посредством прочих фотоэлементов, в данном случае, через бленду 30, как показано на фиг. 6.
Предложенный способ и применяемый при этом чувствительный элемент согласно изобретению можно использовать для постоянного тока или для низкочастотных и высокочастотных напряжений, или также для соответствующих полей постоянного тока или переменных полей.
Как вытекает из описания фиг. 1, предложенный способ и чувствительный элемент для осуществления этого способа может быть полностью работоспособным в том случае, если оси кристалла X и Y повернуты на 90o по отношению к изображению, представленному на фиг. 1.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОТКЛОНЕНИЯ СВЕТОВОГО ПУЧКА | 2012 |
|
RU2512597C1 |
ВОЛОКОННО-ОПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЯ | 1991 |
|
RU2032181C1 |
ЭЛЕКТРИЧЕСКИ ВОЗБУЖДАЕМОЕ ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СДВИГА ЧАСТОТЫ | 2007 |
|
RU2439640C2 |
Устройство для измерения напряженности переменных электрических полей | 1986 |
|
SU1404956A1 |
ВОЛОКОННО-ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ | 2013 |
|
RU2539130C1 |
МОДУЛЯТОР НА ОСНОВЕ ЭФФЕКТА ФАРАДЕЯ | 1997 |
|
RU2129720C1 |
Электрооптический модулятор поляризованного излучения | 2023 |
|
RU2817826C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ КРИСТАЛЛОГРАФИЧЕСКИХ ОСЕЙ В АНИЗОТРОПНОМ ЭЛЕКТРООПТИЧЕСКОМ КРИСТАЛЛЕ КЛАССА 3m | 2012 |
|
RU2528609C2 |
Устройство для измерения напряженности электрического поля | 1984 |
|
SU1317371A1 |
СПОСОБ ПЕРЕКЛЮЧЕНИЯ И МОДУЛЯЦИИ ОДНОНАПРАВЛЕННЫХ РАСПРЕДЕЛЕННО-СВЯЗАННЫХ ВОЛН (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2120649C1 |
Изобретение касается способа измерения электрических напряжений или электрических полей при применении кристалла, имеющего электрооптический эффект (эффект Покеля). Для этого создается поперек к направлению распространения (Y - направление) поляризованной в Z - направлении световой волны градиент напряженности электрического поля в кристалле в X - направлении, из которого вытекает соответствующий градиент показателя преломления n кристалла. В результате этого происходит зависимое от напряженности поля отклонение световой волны в кристалле, которое используется при выходе как мера для напряжения или напряженности поля. Также описывается соответствующий чувствительный элемент. 2 с. и 7 з.п. ф-лы, 7 ил.
US 5012183 A, 30.04.91 | |||
Электрогирационное устройство для бесконтактного измерения высокого напряжения | 1988 |
|
SU1647416A1 |
Электрогирационный измеритель напряженности электрического поля | 1985 |
|
SU1352379A1 |
Электрогирационное устройство для бесконтактного измерения высоких напряжений | 1987 |
|
SU1525593A2 |
Прибор для проверки или отыскания графического представления зубцов | 1944 |
|
SU67683A1 |
СПОСОБ ПОЛУЧЕНИЯ АЛКЕНИЛ- И АЛКАДИЕПИЛКРЕЗОЛОВ | 0 |
|
SU293788A1 |
DE 3924369 A1, 31.01.91. |
Авторы
Даты
1998-10-27—Публикация
1993-02-20—Подача