Изобретение относится к электрической очистке газов от пыли и может быть применено на предприятиях металлургической, химической, нефтеперерабатывающей, горной и других отраслях промышленности.
Известны способы очистки газов от пыли в электрофильтрах с предварительной обработкой пылегазового потока химическими реагентами и распыленной водой (Ужов В. Н. и др. Подготовка промышленных газов к очистке. -М.: Химия, 1975, с. 23-30).
Однако способы не обеспечивают эффективную очистку газов от пыли и вызывают коррозию оборудования применяемыми реактивами.
Известен также способ очистки газов от пыли, заключающийся в том, что перед подачей в электрофильтр пылегазовый поток обрабатывают раствором карбамида CO/NH2.
Использование в качестве химических реагентов карбамида и его производных позволяет при очистке горячих пылегазовых потоков уменьшить вредное воздействие на окружающую среду, повысить срок службы очистных сооружений и эффективность их работы по сравнению с другими реагентами, например, хлористый аммоний и др.
Положительное действие карбамида основано на том, что продукты его разложения при высокой температуре газа (200-400oC) упрочняют электрически межэлектродный промежуток и одновременно снижают удельное электрическое сопротивление слоя пыли на осадительном электроде, исключая возможность возникновения обратной короны (авторское свидетельство СССР N 589023, кл. B 03 C 3/01, 1978).
Однако известный способ не обеспечивает высокую эффективность очистки газа от высокоомной пыли при температурах ниже 2000oC, а также не оказывает влияние на осаждение частиц пыли размером менее 1 мкм.
Задачей, решаемой описываемым изобретением является повышение эффективности очистки дымовых газов от пыли.
Для решения поставленной задачи согласно способу очистки дымовых газов от пыли, содержащей в составе в основном оксиды металлов (Al, Si, Fe, K, Ca и др. ), с введением в поток очищаемых газов химического реагента и очистке газов в электрофильтре, в качестве химического реагента применяют метан и перед очисткой газов в электрофильтре их пропускают через зоны барьерного разряда, возбуждаемого в системе плоскопараллельных электродов, покрытых слоем однородного диэлектрика и установленных в газоходе вдоль газового потока с интервалом по ходу газа.
При воздействии электронных лавин барьерного разряда на пылегазовый поток, происходит активация частиц пыли и их очистка от закоксованных загрязнений, в результате чего, распределенный в газовой среде высокодисперсный материал эффективно осуществляет гетерогенный катализ химических реакций в газовой фазе, каталитическая активность, которого увеличена развитой поверхностью и неупорядочной структурой.
В этих условиях в потоке дымового газа происходит эффективная конверсия углеводородов с получением газов-восстановителей CO, H2, NH3, C и большого количества свободных радикалов CH, HCN, HCO, OH, HO2, NH, NH2, N2H4, HNO и др. с минимальным содержанием кислорода, что существенно увеличивает их восстановительную способность.
Осаждение на частицах пыли молекул реагента и адсорбция на их поверхности влаги обеспечивает восстановление металлов из содержащихся в составе оксидов, что приводит к резкому снижению их электрического сопротивления. Улавливание частиц пыли размером менее 1 мкм осуществляется за счет их эффективной коагуляции при прохождении потоком зон барьерного разряда, возбуждаемого в системе плоскопараллельных электродов, и расположенных в газоходе вдоль газового потока с интервалом по ходу газа.
Это достигается за счет существования в зоне барьерного разряда между электродами значительного униполярного объемного заряда, вызванного электронными ливнями, приводящего к появлению неоднородного электрического поля, воздействующего на дипольные моменты поляризованных частиц пыли. Результирующая сила, воздействующая на диполь в неоднородном поле, стремится передвинуть его в область с большей напряженностью (к электродам).
В результате в промежутках, разделяющих систему плоскопараллельных электродов, формируются области повышенной плотности биполярно заряженных аэрозолей, что приводит к интенсивной их коагуляции.
Из-за невысокой адгезии многих диэлектрических покрытий при скоростях потока более 1 м/с, пыль, осажденная на электродах, отрывается в виде агрегатов, увеличивая процесс коагуляции за электродами.
По мере прохождения аэрозольным потоком разрядных зон степень коагуляции растет и может быть реализована при больших скоростях газового потока (до 10 м/с).
На чертеже представлена схема установки для реализации предлагаемого способа.
Газообразное углеводородное сырье, в качестве, которого использован метан, попадает в основной газоход 1 через соответствующие распылительные системы, установленные в рабочей части 2. Далее поток попадает в разрядный блок, состоящего из распределительной решетки 3 для выравнивания линий тока, газохода 4, сообщающимся последовательно с основным газоходом и корпуса 5, покрытого внутри слоем диэлектрика.
В разрядном блоке имеется система плоско-параллельных электродов 6, покрытых слоем однородного диэлектрика, например, стеклом. Электроды расположены в газоходе вдоль газового потока и интервалом по ходу газа.
Электроды в одном сечении находятся на расстоянии 20 мм друг от друга и к ним в чередующимся порядке подведено высокое напряжение промышленной частоты 30-35 кВ. Затем газы поступают на чистку в электрофильтр 7.
Способ реализуется в широком диапазоне температур очищаемых газов, а в качестве химического реагента могут быть использованы промышленные отходы углеводородов технологических линий.
Резкое снижение электрического сопротивления пыли после обработки в разрядном блоке, без применения значительного увлажнения пылегазового потока позволяет исключить явление пыли на конструктивных элементах электрофильтра. Насыщение очищаемых газов заряженными радикалами и ионами молекул увеличивает зарядку пыли, что облегчает их осаждение на электродах.
Способ осуществляли на дымовых газах ТЭС, содержащих высокоомную пыль, представленную в основном составом в виде высших окислов Al2O3, SiO2, CaO, Fe2O3, Fe3O4 и небольшим количеством других соединений и компонентов; FeO, K2CO3, KOH, Ti2O3, TiO, MgSiO3, Si, Ca, Mg, C и др. Температура газового потока 150oC.
В очищаемые газы перед разрядным блоком вводят метан в количестве 0,002 в объемных процентах по отношению к объему очищаемых газов. Эффективность очистки составила 99%.
Введение, в горячий газ перед разрядным блоком водного раствора карбамида в том же количестве дает эффективность очистки 97%, а без облучения в разрядном блоке - 93%.
Снижение электрического сопротивления пыли в указанных случаях с облучением в разряде составило 3-4 порядка.
Таким образом, предлагаемый способ очистки газов может эффективно применяться для очистки газов от высокоомной пыли в электрофильтре, обеспечивая высокую степень улавливания мелких фракций пыли с размером менее 1 мкм. Могут использоваться также и механические пылеулавители.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ГАЗА | 1997 |
|
RU2121881C1 |
СПОСОБ ОЧИСТКИ ГАЗА | 1994 |
|
RU2077391C1 |
СПОСОБ ФИЛЬТРАЦИОННОЙ ОЧИСТКИ ГАЗОВ | 1998 |
|
RU2132237C1 |
ЭЛЕКТРОФИЛЬТР | 1998 |
|
RU2139146C1 |
СПОСОБ ОЧИСТКИ ГАЗОВ ОТ ПЫЛИ И ЭЛЕКТРОФИЛЬТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2122472C1 |
АППАРАТ ДЛЯ ОЧИСТКИ ГАЗОВ | 1998 |
|
RU2132238C1 |
СПОСОБ ОЧИСТКИ ГАЗА | 1995 |
|
RU2088337C1 |
СПОСОБ ОЧИСТКИ ГАЗА ОТ ПЫЛИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2163513C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ ГАЗА | 2000 |
|
RU2176561C1 |
СПОСОБ ОЧИСТКИ ГАЗА | 1996 |
|
RU2098191C1 |
Изобретение может быть использовано для очистки дымовых газов от высокоомной пыли. Способ основан на введении в пылегазовый поток химического реагента, в качестве которого использован метан, перед подачей газов в электрофильтр их пропускают через зоны барьерного разряда, возбуждаемого в системе плоско-параллельных электродов, покрытых слоем однородного диэлектрика и установленных в газоходе вдоль газового потока и интервалом по ходу газа. Восстановление металлов из содержащихся в составе частиц пыли оксидов приводит к резкому снижению электрического сопротивления пыли, что положительно сказывается при последующем улавливании пыли электрофильтром. Эффективная коагуляция пыли при прохождении зон барьерного разряда позволяет улавливать частицы пыли с размером менее 1 мкм, что может позволить использовать механические аппараты очистки. 1 ил.
Способ очистки дымовых газов от пыли, содержащей в составе в основном оксиды металлов, включающий введение в поток очищаемых газов химического реагента и очистку газов в электрофильтре, отличающийся тем, что в качестве химического реагента применяют метан и перед подачей газов в электрофильтр их пропускают через зоны барьерного разряда, возбуждаемого в системе плоскопараллельных электродов, покрытых слоем однородного диэлектрика и расположенных в газоходе вдоль газового потока с интервалом по ходу газа.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Ужов В.Н | |||
и др | |||
Подготовка промышленных газов к очистке | |||
- М.: Химия, 1975, с.23-30 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ очистки газов от высокоомной пыли | 1976 |
|
SU589023A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
US 3495381, 1970 | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
DE 3310536, 1984 | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Веникодробильный станок | 1921 |
|
SU53A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Способ изготовления звездочек для французской бороны-катка | 1922 |
|
SU46A1 |
Авторы
Даты
1998-12-10—Публикация
1997-02-13—Подача