МАГНИТНЫЙ НОСИТЕЛЬ ИНФОРМАЦИИ Российский патент 1999 года по МПК G11C11/14 

Описание патента на изобретение RU2128372C1

Изобретение относится к области информатики и вычислительной техники и может быть использовано в магнитооптических запоминающих устройствах внешней памяти электронно-вычислительных машин и бытовых приборах.

Известен магнитный носитель информации для магнитооптических запоминающих устройств, представляющий собой аморфную пленку DyFeCo с перпендикулярной магнитной анизотропией, полученную методом электронно-лучевого испарения на предварительно нанесенный на диэлектрическую подложку диэлектрический слой ZnS, с защитным слоем SiO2[1]. Достоинством такого носителя является сравнительно большое значение полярного магнитооптического эффекта Керра при считывании со стороны подложки (θk= 0,65° при λ = 820 нм) по сравнению с θk= 0,35° без диэлектрического слоя.

Однако носитель обладает следующими недостатками: небольшой показатель преломления (n=2.2) ZnS не позволяет получить большую величину θk; недостаточно большое значение магнитооптической добротности
Наиболее близким по технической сущности к предлагаемому носителю является магнитный носитель информации, представляющий собой 4-х слойную интерференционную структуру, в которую входит аморфная пленка DyFeCo, получаемая методом распыления, заключенная между диэлектрическими слоями AlN и покрытая сверху отражающим слоем AlTi [2]. Достоинством такого носителя является более высокое значение магнитооптического полярного эффекта Керра (θk= 1,1° при λ = 780 нм) и возможность получения оптимальной величины эффективного показателя преломления за счет выбора соответствующих толщин магнитных и диэлектрических слоев.

Однако носитель обладает недостаточно высоким эффективным показателем преломления (n ≈ 2), определяющим, в конечном счете, максимальные значения θk.
Техническим результатом при осуществлении изобретения является увеличение полярного магнитооптического эффекта Керра и увеличение магнитооптической добротности в области длин волн λ = 0,78-0,82 нм при считывании со стороны подложки.

Известно [3], что диэлектрический слой толщиной λ/4, нанесенный на магнитную пленку, в результате интерференции отраженных от границ раздела лучей увеличивает угол вращения Керра системы в n2, где n - показатель преломления диэлектрического слоя. Эксперименты продемонтрировали увеличение θk в 1,6 раз, если пленка TbFe является магнитным слоем, а диэлектрическим слоем служит пленка SiO (n ≈ 1,9) [4] и увеличение в 1,75 раз, если в качестве диэлектрического слоя используется пленка ZnS (n = 2,2) [1]. Следовательно, представляется целесообразным использование диэлектрических слоев с большими показателями преломления.

Известно [5] , что применение отражающего покрытия является необходимым для максимального использования интенсивности падающего света при сравнительно малых толщинах магнитного слоя. С другой стороны, если толщины приподложечного и промежуточного диэлектрических слоев равны λ/4 и λ/2 соответственно, то отраженный от отражающего слоя свет возвращается в фазе с компонентой, отраженной непосредственно от магнитного слоя, и происходит сложение амплитуд выходных лучей, то есть имеет место интерференционное усиление. Несмотря на то, что аморфный магнитный слой имеет коэффициент отражения (R ≈ 50%) ниже, чем для слоя Al или Cu, его можно использовать в качестве отражающего слоя. При этом величина магнитооптического (МО) вращения Керра системы в целом будет определяться не только МО активностью промежуточного магнитного слоя, но и активностью отражающего слоя (магнитного зеркала).

Технический результат осуществляется благодаря тому, что в магнитный носитель информации в качестве диэлектрического приподложечного и промежуточного слоя вводится моноокись германия (GeO, n ≈ 2,8), а в качестве отражающего покрытия вводится магнитный слой DyFeCo с перпендикулярной магнитной анизотропией.

В вакууме 3 • 10-4 Па на диэлектрическую (стеклянную) подложку толщиной 0,2 мм, температура которой в процессе напыления поддерживается равной 20 - 30oC, методом термического испарения последовательно осаждали диэлектрические (GeO) и магнитные (DyFeCo) слои. Полученную структуру (фиг. 1) покрывали защитным слоем GeO. Приподложечный слой GeO выбирали толщиной в интервале 60 - 102 нм. Толщина первого магнитного слоя составляла 10 нм. Толщина второго диэлектрического слоя была выбрана равной 34 нм. Второй магнитный слой, который является и отражающим, выбирали больше окин-слоя и он составлял 70 нм. Толщина слоя была равной 150 нм. Контроль толщин и скорости осаждения осуществлялся с помощью кварцевого измерителя. Состав магнитных слоев выбирали таким образом, чтобы слои обладали перпендикулярной анизотропией, а именно, 20 ат.% Dy и 80 ат.% FeCo, где Fe и Co выбраны в соотношении 2:1. Такое соотношение компонент в магнитном слое обеспечивает оптимальную величину коэрцитивной силы (Hс ≈ 3 кЭ) и максимальное значение полученного магнитооптического эффекта Керра для одного слоя. Наиболее важные характеристики полученных образцов приведены в таблице.

Сравнительный анализ приведенных в таблице данных позволяет выявить, что оптимальными свойствами обладает носитель с приподложечным и промежуточным слоями толщиной 81 нм и 34 нм, соответственно. При этом значение θk= 1,5 град и магнитоооптическая добротность превосходят аналогичные параметры для известного носителя.

Таким образом, введение диэлектрических слоев из GeO в качестве приподложечного и промежуточного, и введение магнитного слоя DyFeCo в качестве отражающего позволяет увеличить значения полярного магнитооптического эффекта Керра и увеличить магнитооптическую добротность.

Литература
1. Tanaka F., Nagano Y., Imamura N. Dynamic read/write characteristics of magnetooptical TbFeCo and DyFeCo disk. IEEE Trans.Magn., v. MAG-20, N5, p. 1033-1035, 1984.

2. Tabata M. Magnetooptical storage media using DyFeCo film for magnetic field modulation direct owerwriting. Jpn. J. Appl. Phys., v 33, N 10, p. 5811-5816, 1994.

3. Соколов А.В. Оптические свойства металлов M., 1961, с 464.

4. Niihara T., Ohta N., Kaneko K., Sugita Y., Horigame Sh. Kerr enhancement by SiO and AlN films sputtered on plastic substrates. Ieee Trans. Magn., v. MAG-22, N 5, p. 1215-1217, 1986.

5. Nakamura K., Asaka T., Agari S., Ota Y., Jtoh A. Enhancement of Kerr rotation wit hamorphous Si film. IEEE Trans. Magn., v. MAG-21, N5, p. 1654-1656, 1985.

Похожие патенты RU2128372C1

название год авторы номер документа
МАГНИТООПТИЧЕСКИЙ ДИСК ДЛЯ ЗАПИСИ, ХРАНЕНИЯ И ВОСПРОИЗВЕДЕНИЯ ИНФОРМАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2009
  • Костишин Владимир Григорьевич
  • Кожитов Лев Васильевич
  • Шипко Михаил Николаевич
  • Медведь Виктор Вячеславович
RU2430432C2
ЖИДКОКРИСТАЛЛИЧЕСКОЕ УСТРОЙСТВО 1996
  • Сморгон С.Л.
  • Пресняков В.В.
  • Зырянов В.Я.
  • Шабанов В.Ф.
RU2141683C1
Магнитный носитель информации 1990
  • Яковчук Виктор Юрьевич
  • Середкин Виталий Александрович
  • Буркова Людмила Викторовна
  • Склюев Сергей Зиновьевич
SU1718273A1
МАГНИТНОЕ ЗЕРКАЛО 1983
  • Мамаев Ю.А.
  • Новиков М.А.
SU1179798A1
МАГНИТООПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ И СПОСОБ ВИЗУАЛИЗАЦИИ НЕОДНОРОДНОГО МАГНИТНОГО ПОЛЯ 2009
  • Иванов Владимир Елизарович
RU2399939C1
ЖИДКОКРИСТАЛЛИЧЕСКОЕ УСТРОЙСТВО 1994
  • Зырянов В.Я.
  • Сморгон С.Л.
  • Шабанов В.Ф.
RU2081443C1
ДАТЧИК МАГНИТНОГО ПОЛЯ 1992
  • Беляев Б.А.
  • Тюрнев В.В.
RU2091808C1
МАГНИТООПТИЧЕСКОЕ СТЕКЛО 1995
  • Замков А.В.
  • Заблуда В.Н.
  • Паршиков С.А.
  • Зайцев А.И.
RU2098366C1
Магнитооптический носитель информации 1984
  • Роберт Поул Фриз
  • Лесли Харольд Джонсон
  • Томас Алан Райнхарт
  • Ричард Ниль Гарднер
SU1503689A3
МИКРОПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 1993
  • Беляев Б.А.
  • Тюрнев В.В.
  • Шихов Ю.Г.
RU2078393C1

Иллюстрации к изобретению RU 2 128 372 C1

Реферат патента 1999 года МАГНИТНЫЙ НОСИТЕЛЬ ИНФОРМАЦИИ

Изобретение относится к информатике и вычислительной технике и может быть использовано в магнитооптических запоминающих устройствах внешней памяти электронно-вычислительных машин и бытовых приборах. Магнитный носитель информации содержит подложку и нанесенные на нее чередующиеся диэлектрические и магнитоактивные слои, обладающие перпендикулярной магнитной анизотропией. В качестве приподложечного и промежуточного слоев введены слои GeO, а в качестве отражающего слоя - магнитный слой DyFeCo. Техническим результатом при осуществлении изобретения является увеличение полярного магнитооптического эффекта Керра и увеличение магнитооптической добротности в области длин волн λ = 0,78-0,82 нм при считывании со стороны подложки. 1 ил., 1 табл.

Формула изобретения RU 2 128 372 C1

Магнитный носитель информации, содержащий подложку и нанесенную на нее слоистую структуру из чередующихся диэлектрических, магнитного и отражающего слоев, обладающую перпендикулярной магнитной анизотропией, отличающийся тем, что диэлектрические приподложечный и промежуточный слои выполнены из GaO, а отражающий - из магнитного материала DyFeCo, нанесенного сверху.

Документы, цитированные в отчете о поиске Патент 1999 года RU2128372C1

Tanaka F., Nagano Y., Imamura N
Dynamic read/write characteristics of magnetooptical TbFeCo and/DyFeCo disk IEEE
Trans
Magn.v
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Tabata M
Magnetooptical storage media using DyFeCo film for magnetis field modulation direct owerwriting Jpn
J
Appl
Phys, v.33, N 10, p.5811 - 5816, 1994
Соколов А.В
Оптические свойства металлов
М., 1961, с.464
Niihara T., Ohta N., Kaneko K., Sugita Y., Horigame Sh
Kerr enhancement by SiO and AIN films sputtered on plastic substrates
IEEE Trans
Magn., v
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Nakamura K., Asaka T., Agari S., Ota Y., Jhoh A
Enhancement of Kerr rotation wit hamorphous Si film IEEE Trans
Magn., v
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Ветро-водяной двигатель 1924
  • Воронин А.А.
  • Воронин Я.А.
SU1654A1

RU 2 128 372 C1

Авторы

Яковчук В.Ю.

Середкин В.А.

Буркова Л.В.

Даты

1999-03-27Публикация

1996-09-04Подача