Предлагаемое изобретение относится к вибрационным и ударным устройствам, используемым в горной промышленности и строительстве для уплотнения бетона или насыпного грунта, а также для привода виброконвейеров.
Известен пневматический вибровозбудитель по авт. свид. СССР N 1305092, кл. B 65 G 27/22, БИ N 15 за 1987 г., содержащий корпус с верхней и нижней мембранами и закрепленным между ними ударником, канал подвода сжатого воздуха. При этом нижняя и верхняя части корпуса выполнены в виде дисков с коническими поверхностями, обращенными к мембранам. В ударнике выполнен вертикальный воздухораспределительный канал, а в нижней мембране выполнено отверстие для выхлопа воздуха.
Недостатком известного вибровозбудителя является повышенный расход сжатого воздуха, так как при выхлопе обе рабочие камеры сообщены между собой и с атмосферой. Кроме того, снижается эффективность работы вибровозбудителя, так как при сообщении с атмосферой нижней камеры уменьшается давление сжатого воздуха в верхней камере. От этого уменьшается усилие воздействия сжатого воздуха на ударник, что уменьшает величину возмущающей силы на части рабочего цикла и частоту колебаний ударника.
Ближайшим аналогом по технической сущности и достигаемому результату вибровозбудитель по авт. свид. СССР N 1459724, кл. B 06 B 1/18, БИ N 7 за 1989, содержащий корпус с верхней и нижней мембранами и закрепленным между ними ударником и канал подвода сжатого воздуха. При этом нижняя и верхняя части корпуса выполнены в виде дисков с коническими поверхностями, обращенными к мембранам. В ударнике выполнен вертикальный воздухораспределительный канал, а в нижней мембране выполнено отверстие для выхлопа сжатого воздуха. В воздухораспределительном канале ударника размещен ступенчатый патрубок, жестко связанный с корпусом.
Недостатком рассматриваемого устройства является повышенный расход сжатого воздуха, так как в верхнем положении ударника верхняя камера соединена с впускным каналом. Кроме того, снижается эффективность работы вибровозбудителя из-за перетечек сжатого воздуха между камерами по зазорам между большей ступенью патрубка и воздухораспределительным каналом ударника.
Техническая задача, решаемая в предлагаемом изобретении, заключается в повышении эффективности работы вибровозбудителя за счет повышения возмущающей силы и частоты колебаний при снижении расхода сжатого воздуха.
Поставленная задача достигается за счет того, что в пневматическом вибровозбудителе, содержащем корпус с верхней и нижней мембранами и закрепленной между ними подвижной массой с продольным каналом (в случае ударного режима работы вибровозбудителя подвижная масса может называться ударником, а при вибрационном режиме работы - дебалансом) и канал подвода сжатого воздуха, при этом верхняя и нижняя части корпуса выполнены в виде соединенных между собой дисков с коническими поверхностями, обращенными к мембранам, причем в одной из них выполнено выхлопное отверстие, а в продольном канале подвижной массы размещен ступенчатый патрубок, жестко связанный с корпусом, согласно изобретению большая ступень патрубка выполнена подвижной относительно меньшей, причем в верхней части подвижной массы со стороны продольного канала выполнен кольцевой выступ с возможностью контактирования с большей ступенью патрубка. При этом на меньшей ступени патрубка размещена пружина, которая одним концом упирается в подвижную большую ступень патрубка, а вторым концом - в корпус.
Такое выполнение пневматического вибровозбудителя обеспечивает управление временем заполнения сжатым воздухом рабочих камер и оптимальный момент выхлопа за счет того, что большая ступень патрубка более длительное время перекрывает продольный канал подвижной массы, что, в свою очередь, повышает величину максимальной возмущающей силы. Кроме того, это снижает расход сжатого воздуха и уменьшает его перетечки между камерами.
Целесообразно пружину вторым концом упирать в корпус через выступ патрубка.
Такое конструктивное решение способствует повышению точности времени контакта большей ступени патрубка с подвижной массой, так как эластичные элементы крепления патрубка к корпусу вибровозбудителя не оказывают влияния на продолжительность контакта.
Целесообразно к подвижной массе со стороны большей ступени патрубка прикреплять втулку, отверстие которой имеет меньший диаметр, чем диаметр продольного канала.
Такое выполнение вибровозбудителя образует ступенчатый канал в подвижной массе.
Целесообразно кольцевой выступ подвижной массы и контактирующую с ним поверхность большей ступени патрубка выполнять коническими с одним углом конусности.
Такое выполнение конструкции гарантирует надежное перекрытие продольного канала подвижной массы большей ступени патрубка, что сводит до минимума перетечки между рабочими камерами, а следовательно, максимально увеличивает величину возмущающей силы.
Сущность предлагаемого технического решения подтверждается примерами конкретного выполнения и чертежами, где на фиг. 1 изображен пневматический вибровозбудитель (общий вид) в вертикальном разрезе; фиг. 2 - пневматический вибровозбудитель с коническими поверхностями кольцевого выступа в продольном канале подвижной массы и на большой ступени патрубка; фиг. 3 - пневматический вибровозбудитель с креплением патрубка к верхней части корпуса; фиг. 4 - пневматический вибровозбудитель с втулкой, закрепленной к подвижной массе.
Пневматический вибровозбудитель (фиг. 1) состоит из корпуса (позицией не обозначен), верхняя и нижняя части которого выполнены в виде дисков 1, 2, скрепленных между собой по окружности болтами (позицией не обозначены). Между дисками 1, 2 размещена подвижная масса 3 и мембраны 4, 5, каждая из которых по периферии прикреплена болтами к подвижной массе 3, а по центру - к верхнему или нижнему диску 1, 2 соответственно. Мембраны 4, 5 совместно с подвижной массой 3 образуют верхнюю 6 и нижнюю 7 рабочие камеры. В нижней мембране 5 выполнено выхлопное отверстие 8. В верхней мембране 4 выхлопное отверстие 9 может быть выполнено (фиг. 1,3) или нет (фиг. 2). Однако в последнем случае энергетические характеристики вибровозбудителя будут ниже. Выхлопных отверстий 8 или 9 может быть несколько. В этом случае все выхлопные отверстия 8 и 9 должны быть расположены на одном расстоянии от продольной оси вибровозбудителя, чтобы гарантировать выхлоп сжатого воздуха одновременно через все отверстия 8 или 9. Подвижная масса 3 выполнена с продольным каналом 10, соединяющим обе рабочие камеры 6, 7. В канале 10 размещен двухступенчатый патрубок 11, жестко закрепленный к корпусу вибровозбудителя: к нижнему диск 2 (фиг. 1) или к верхнему диску 1 (фиг. 3). Большая ступень патрубка 11 выполнена подвижной относительно меньшей, при этом между большой ступенью парубка 11 и корпусом установлена пружина 12, а сама большая ступень выполнена в виде втулки 13. Пружина 12 одним из концов упирается в диск 2 корпуса непосредственно (фиг. 4), но может упираться в любой из дисков 1, 2 корпуса через кольцевой выступ 14, жестко закрепленный на меньшей ступени патрубка 11 (фиг. 1). Большая ступень патрубка 11 выполнена цилиндрической (фиг. 1,4), но может быть выполнена конической (фиг. 2, 3). В первом случае подвижная масса 3 выполнена с кольцевым выступом 15, контактирующим с торцевой поверхностью большой ступени 13 патрубка 11 (фиг. 1). Продольный канал может быть выполнен также прикреплением втулки 16 (фиг. 4) с отверстием, диаметр которого меньше диаметра продольного канала 10, к подвижной массе 3. Во втором случае кольцевой выступ 15 подвижной массы 3 и контактирующая с ним поверхность большой ступени патрубка 11 выполнены коническими 17 (фиг. 2, 3). Угол конусности контактирующих конических поверхностей большой ступени патрубка 11 и кольцевого выступа 15 подвижной массы 3 одинаков. Коническая 17 или торцевая поверхности кольцевого выступа 15 подвижной массы 3 выполняют функцию упора для подвижной большей ступени патрубка 11 на протяжении части рабочего цикла, служащей заглушкой, что и исключает перетечки воздуха между камерами 6, 7. Большая ступень патрубка 11 может быть выполнена эластичной, например из резина (фиг. 2,3). Впускной канал 18 выполнен в подвижной массе 3, а выхлопные отверстия 8 или 9 могут быть выполнены в любой (нижней 5 или верхней 4) мембране (в связи с известностью этого решения ниже на нем не останавливаемся).
Пневматический вибровозбудитель работает следующим образом.
Под действием собственного веса подвижная масса 3 находится в нижнем положении. При этом мембрана 5 охватывает коническую поверхность нижнего диска 2. Выхлопные отверстия 8 мембраны 5 перекрыты поверхностью нижнего диска 2 корпуса. Большая ступень, выполненная в виде втулки 13 патрубка 11, располагается над впускным каналом 18 подвижной массы 3 и своей торцевой поверхностью контактирует с кольцевым выступом 15 подвижной массы 3. Таким образом, верхняя камера 6 отсечена от магистрали. Надежность отсечения повышается при использовании эластичного материала, например резины, для большой ступени патрубка 11. В этом положении верхняя камера 6 соединена с атмосферой (фиг. 1, 3) при помощи выхлопного отверстия 9 в мембране 4 или может быть не соединена с атмосферой.
При подаче сжатого воздуха по впускному каналу 18 он поступает в нижнюю камеру 7. По мере поступления сжатого воздуха в камеру 7 давление в ней повышается. Мембрана 5 стремится выпрямиться и, тем самым, поднимает подвижную массу 3. При этом деформируются нижняя 5 и верхняя 4 мембраны. Усилие со стороны нижней мембраны 5 уменьшается по мере уменьшения площади ее контакта с нижним диском 2 корпуса, а усилие со стороны верхней мембраны 4 увеличивается по мере увеличения площади контакта верхней мембраны 4 с верхним диском 1 корпуса. Когда подвижная масса 3 переместится на длину, превышающую длину большой ступени патрубка 11, сжатый воздух поступает в верхнюю камеру 6. Создается усилие со стороны верхней камеры 6, которое сдвигает подвижную массу 3 вниз. В этот момент выхлопное отверстие 8 из-за деформации нижней мембраны 5 откроется и сжатый воздух из камеры 7 через отверстие 8 выхлапывается в атмосферу. Большая ступень патрубка 11 будет расположена ниже впускного канала 18 и, тем самым, нижняя камера 7 будет отсечена от впускного канала 18. Подвижная масса 3 движется вниз под действием силы, создаваемой в верхней камере 6, и силы тяжести подвижной массы 3. По мере опускания подвижной массы 3 сначала перекроется выхлопное отверстие 8 поверхностью нижнего диска 2, затем впускной канал 18 сообщится с камерой 7 и цикл повторится.
В случае, если верхняя камера 6 не имеет выхлопного отверстия (фиг. 2), то она постоянно будет заполнена сжатым воздухом, а в верхнем положении подвижной массы 3 она будет подпитываться сжатым воздухом из канала 18, что компенсирует утечки. Усилие со стороны верхней камеры 6 будет переменным за счет изменения площади опоры верхней мембраны 4. Когда часть мембраны 4 прижата к диску 1 корпуса, она находится в условиях трехстороннего сжатия и на соответствующую площадь подвижной массы 3 действует сила, создаваемая сжатым воздухом. Следовательно, усилие в верхней камере 6 меняется от минимального (когда подвижная масса 3 находится внизу, а площадь опоры верхней мембраны 4 минимальна) до максимального (когда подвижная масса 3 находится вверху, а площадь опоры верхней мембраны 4 максимальна). В нижней камере 7 усилие меняется от максимального (в нижнем положении подвижной массы 3, когда площадь опоры нижней мембраны 5 максимальна) до минимального ( в верхнем положении подвижной массы 3, когда площадь опоры нижней мембраны 5 минимальна, когда давление сжатого воздуха в камере 7 равно атмосфере). Дисбалансировка сил приводит к возвратно-поступательному движению подвижной массы 3. При наличии выхлопного отверстия 9 в верхней мембране 4 (фиг. 3) в нижнем положении подвижной массы 3 произойдет выхлоп сжатого воздуха из верхней камеры 6. В итоге, при подъеме подвижной массы 3 сверху на нее не будет воздействовать сила на большей части пути и только после сообщения камеры 6 с впускным каналом 18, когда большая ступень патрубка 11 окажется ниже впускного канала 18, появится сила сопротивления. Это позволит, с одной стороны, ускорить движение подвижной массы 3, что повысит частоту ее колебаний, а с другой стороны - увеличится возмущающая сила, которая будет равна алгебраической сумме сил, создаваемых давлением сжатого воздуха в нижней 7 и верхней 6 камерах. При отсутствии силы сопротивления со стороны верхней камеры 6, когда подвижная масса 3 движется вверх, создается большая возмущающая сила. Прикрывая выхлопное отверстие 9 или открывая его, можно регулировать частоту колебаний подвижной массы 3 и величину возмущающей силы.
При выполнении большой ступени патрубка 11 подвижной (подпружиненной) камера 7 наполняется сжатым воздухом в течение большего времени, а камера 6 наоборот - в течение меньшего времени. Регулируя ход подвижной втулки 13 можно изменить частоту колебаний подвижной массы 3 и, самое главное, получить асимметричные во времени возмущающие силы.
Подвижная втулка 13 большой ступени патрубка 11 может быть выполнена из эластичного материала, который в большей степени, чем втулка, выполненная из жесткого материала, герметизирует контакт при соприкосновении торцевых поверхностей кольцевого выступа 15 подвижной массы 3 с втулкой 13, обеспечивая эффективность работы пневматического вибровозбудителя.
Использование предлагаемого пневматического вибровозбудителя позволяет по отношению к прототипу повысить частоту колебаний примерно на 20%, а возмущающую силу - примерно в 1,5 раза. Расход сжатого воздуха сокращается примерно на 15%. Это позволит расширить область применения пневматического вибровозбудителя.
название | год | авторы | номер документа |
---|---|---|---|
ПНЕВМАТИЧЕСКОЕ РЕВЕРСИВНОЕ УДАРНОЕ УСТРОЙСТВО ДЛЯ ПРОХОДКИ СКВАЖИН В ГРУНТЕ | 1999 |
|
RU2151851C1 |
УСТРОЙСТВО ДЛЯ ВЕРТИКАЛЬНОГО ЗАБИВАНИЯ В ГРУНТ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ, ПРЕИМУЩЕСТВЕННО ТРУБ | 1997 |
|
RU2125139C1 |
Пневматический вибровозбудитель | 1985 |
|
SU1305092A1 |
Пневматический вибровозбудитель | 1987 |
|
SU1459724A2 |
ПНЕВМАТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ ЗАБИВАНИЯ В ГРУНТ ДЛИННОМЕРНЫХ ЭЛЕМЕНТОВ, НАПРИМЕР ТРУБ | 1999 |
|
RU2149956C1 |
ПНЕВМАТИЧЕСКОЕ УДАРНОЕ УСТРОЙСТВО ДЛЯ ЗАБИВАНИЯ В ГРУНТ СТЕРЖНЕВЫХ ЭЛЕМЕНТОВ, НАПРИМЕР ТРУБ (ВАРИАНТЫ) | 2002 |
|
RU2229558C1 |
ПНЕВМАТИЧЕСКИЙ УДАРНЫЙ МЕХАНИЗМ | 1998 |
|
RU2135702C1 |
УДАРНОЕ ПНЕВМАТИЧЕСКОЕ УСТРОЙСТВО | 1999 |
|
RU2161225C1 |
ПНЕВМАТИЧЕСКОЕ УСТРОЙСТВО УДАРНОГО ДЕЙСТВИЯ ДЛЯ ОБРАЗОВАНИЯ СКВАЖИН В ГРУНТЕ | 1994 |
|
RU2090706C1 |
УСТРОЙСТВО УДАРНОГО ДЕЙСТВИЯ | 1993 |
|
RU2105881C1 |
Изобретение относится к виброударным устройствам, используемым в горной промышленности и строительстве для уплотнения бетона или насыпного грунта, а также для привода виброконвейеров. Пневматический вибровозбудитель содержит корпус с верхней и нижней мембранами и закрепленной между ними подвижной массой с продольным каналом и каналом подвода сжатого воздуха. Верхняя и нижняя части корпуса выполнены в виде соединенных между собой дисков с коническими поверхностями, обращенными к мембранам, в одной из которых выполнено выхлопное отверстие. В продольном канале подвижной массы размещен ступенчатый патрубок, жестко связанный с корпусом. Согласно изобретению большая ступень патрубка выполнена подвижной относительно меньшей, причем в верхней части подвижной массы со стороны продольного канала выполнен кольцевой выступ с возможностью контактирования с большой ступенью патрубка. При этом на меньшей ступени патрубка размещена пружина, которая одним концом упирается в подвижную большую ступень патрубка, а вторым концом - в корпус. Такое выполнение конструкции пневматического вибровозбудителя повышает эффективность его работы, т.к. уменьшаются перетечки между камерами при движении подвижной массы, что и позволяет увеличить дисбаланс сил, создаваемых давлением сжатого воздуха. 3 з.п.ф-лы, 4 ил.
Пневматический вибровозбудитель | 1987 |
|
SU1459724A2 |
Пневматический вибровозбудитель | 1985 |
|
SU1305092A1 |
ЗАТИРОЧНАЯ МАШИНА ДЛЯ ОТДЕЛКИ СТЕНОВЫХ ПАНЕЛЕЙ | 0 |
|
SU400480A1 |
US 3601084, 24.08.71. |
Авторы
Даты
1999-08-27—Публикация
1998-02-03—Подача