Изобретение относится к области ядерной энергетики для космических аппаратов и может быть использовано при изготовлении теневых радиационных защит (РЗ) из перемежающихся слоев гидрида лития и тяжелого материала, предназначенных для одновременного снижения уровня нейтронного и гамма-излучения от ядерного реактора или изотопного источника до допустимых для полезной нагрузки значений.
Известные способы изготовления таких многокомпонентных защит основаны на включении в их состав возможно большего количества перемещающихся слоев гидрида лития и тяжелого материала, поскольку суммарная толщина и масса многокомпонентной защиты теоретически уменьшается в обратной зависимости от количества перемещающихся слоев гидрида лития и тяжелого материала. Одним из возможных путей их реализации является способ, при котором в зависимости от структуры РЗ тяжелых компонентов в виде диска помещают в отсек перед сливом в него гидрида лития, либо после слива с последующим заполнением очередного слоя гидрида лития и т.д. (см. книгу Конструкции и расчет на прочность космических электрореактивных двигателей. Гуров А.Ф., Севрук Д.Д., Сурнов Д.Н. М., Машиностроение, 1970, стр. 83).
Недостатком этого способа служит большая трудоемкость, обусловленная многократной разборкой и сборкой литьевой установи и, как следствие, значительная продолжительность технологического цикла изготовления многокомпонентной РЗ. Особенно этот недостаток проявляется при изготовлении РЗ, состоящих из нескольких слоев гидрида лития и тяжелого компонента.
Наиболее близким техническим решением является способ, в котором создание возможно большего количества перемежающихся слоев достигается механическим соединением чередующихся пластин из тяжелого материала и слоев литого или прессованного гидрида лития, включенных в стальные оболочки (см. "Вопросы космической энергетики" пер. с анл. под ред. А.А.Куландина и С.В. Тимашева, М. , "Мир", 1971 г, стр. 169...171; или Jahnson G.V., Mason D.G., AIAA Paper N 65-473, AIAA Second Annuai Meeting, July 26...29, 1965, перевод в журнале "Вопросы ракетной техники", N 10, 1966 г., стр. 72...83, N 11, 1966 г., стр. 70...77).
Недостатком этого способа является практическая невозможность получить многослойную оптимальную по структуре РЗ из-за низкой технологичности, заключающейся в необходимости сборки в единый блок нескольких отсеков, имеющих каждый свои геометрические отклонения размеров, препятствующих обеспечению необходимой соосности и герметичности проходок через РЗ органов регулирования реактора.
Задача, на выполнение которой направлено заявленное изобретение - повышение массогабаритных характеристик многокомпонентной РЗ, одним из компонентов которой служит гидрид лития.
Технический результат - более эффективное, с точки зрения нейтронно-физического расчета, распределение тяжелого компонента в монолите гидрида лития.
Этот результат достигается тем, что в отсек, имеющего форму усеченного конуса в зону меньшего основания помещают куски предварительно приготовленного плава гидрида лития с диспергированным в него мелкодисперсным порошком вольфрама или нитрида урана плотностью около 4 кг/см3, нагревают отсек до температуры 450...550oC, сливают в оставшееся пространство расплавленный гидрид лития, охлаждают со скоростью около 2oC/час и герметизируют полученный монолит, состоящий из слоя диспергированного вольфрама или нитрида урана и гидрида лития.
Предварительное заполнение кусками отсека позволяет профилировать слой тяжелого компонента как по толщине, так и по радиусу, обеспечивая тем самым оптимальные массогабаритные характеристики РЗ. Нейтроннофизические расчеты показали что при значительных кратностях ослабления фотонов (более 100) экономия массы РЗ может достигать 30%. Для формирования необходимого профиля тяжелого компонента возможно применение металлических сеток, фиксирующих куски в отсеке.
На чертеже приведена конструктивная схема моноблочной многокомпонентной РЗ, изготовленной предлагаемым способом.
Пример выполнения способа. Корпус отсека 1 через заливочную горловину 2 загружается кусками 3 сплава гидрида лития с диспергированным в нем мелкодисперсным порошком вольфрама или нитрида урана 238, помещают загруженный корпус в герметичную камеру для слива гидрида лития, нагревают до температуры 450...550oC, сливают в корпус расплавленный гидрид лития 4, охлаждают со скоростью около 2oC/час, извлекают из установки и герметизируют крышкой 5 полученный монолит гидрида лития с диспергированным в него тяжелым компонентом 6. Соответствующий профиль слоя тяжелого компонента обеспечивается установленной внутри корпуса отсека металлической сеткой 7.
Получение кусков гидрида лития с диспергированным в него вольфрамом или нитридом урана 238 производится путем слива расплавленного гибрида лития в емкость, заполненную порошком указанных металлов.
Таким образом заявленный способ позволяет изготавливать многокомпонентную РЗ в моноблочном исполнении, снимая вопросы, связанные со сборкой отдельных компонентов РЗ в единый узел. Тем самым появляется возможность реализации на практике оптимальной защитной композиции с минимальной массой и габаритами.
название | год | авторы | номер документа |
---|---|---|---|
РАДИАЦИОННАЯ ЗАЩИТА КОСМИЧЕСКОЙ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 1993 |
|
RU2069898C1 |
РАДИАЦИОННАЯ ЗАЩИТА КОСМИЧЕСКОЙ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 1993 |
|
RU2069899C1 |
КОСМИЧЕСКАЯ ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1998 |
|
RU2131150C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИАЦИОННО-ЗАЩИТНОГО МАТЕРИАЛА НА ОСНОВЕ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА С ПОВЫШЕННЫМИ РАДИАЦИОННО-ЗАЩИТНЫМИ СВОЙСТВАМИ | 2014 |
|
RU2563650C1 |
ТЕПЛОВАЯ РАДИАЦИОННАЯ ЗАЩИТА КОСМИЧЕСКОЙ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 1992 |
|
RU2042984C1 |
ТЕНЕВАЯ РАДИАЦИОННАЯ ЗАЩИТА | 2002 |
|
RU2225649C2 |
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ГЕОМЕТРИИ ТЕНЕВОЙ ГИДРИДЛИТИЕВОЙ РАДИАЦИОННОЙ ЗАЩИТЫ | 1995 |
|
RU2113737C1 |
СПОСОБ КОНТРОЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ КОСМИЧЕСКОЙ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 1993 |
|
RU2073919C1 |
СПОСОБ УТИЛИЗАЦИИ РАДИАЦИОННОЙ ЗАЩИТЫ ИЗ ГИДРИДА ЛИТИЯ | 1999 |
|
RU2174720C2 |
КОСМИЧЕСКАЯ ЯДЕРНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2001 |
|
RU2225647C2 |
Использование: при изготовлении теневых радиационных защит, предназначенных для снижения нейтронного и гамма-излучения от ядерного реактора или изотопного источника. Способ включает размещение в отсеке предварительного приготовленного плава гидрида лития с диспергированным в него порошком вольфрама с последующим нагревом до 450 - 550oС. Затем осуществляют охлаждение со скоростью около 2oС/ч. При этом свободное пространство отсека заполняют расплавленным гидридом лития. Полученный монолит с необходимым профилем гидрида лития и диспергирозанмого в него тяжелого компонента герметизируют. В результате повышается массогабаритная характеристика многокомпонентной радиационной защиты. 1 з.п. ф-лы, 1 ил.
Вопросы космической энергетики | |||
Пер | |||
с англ | |||
Под ред | |||
А.А.Куландина и С.В.Тимашева | |||
-М.: Мир, 1971, с | |||
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Гуров А.Ф., Севрук Д.Д., Сурнов Д.Н | |||
Конструкция и расчет на прочность космических злектрореактивных двигателей | |||
-М.: Машиностроение, 1970, с | |||
Пуговица | 0 |
|
SU83A1 |
Еремин А.Г | |||
и др | |||
Расчет, проектирование, технология изготовления радиационной защиты космических ЯЭУ | |||
-Атомная энергия, т | |||
Приспособление в центрифугах для регулирования количества жидкости или газа, оставляемых в обрабатываемом в формах материале, в особенности при пробеливании рафинада | 0 |
|
SU74A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Прибор для корчевания пней | 1921 |
|
SU237A1 |
Еремин А.Г | |||
и др., Конструкционно-технологические методы повышения прочности гидридлитиевой радиационной защиты космических ЯЭУ | |||
-Атомная энергия, т.74, вып.3, март 1993 г., с | |||
Ведущий наконечник для обсадной трубы, употребляемой при изготовлении бетонных свай в грунте | 1916 |
|
SU258A1 |
Авторы
Даты
1999-09-10—Публикация
1997-07-08—Подача