Изобретение относится к нефтегазовой промышленности и может быть использовано для ликвидации гидро-смоло-парафиновых отложений в скважинах, повышения продуктивности скважины и отдачи всего пласта.
Известно "Устройство для восстановления скважин", патент РФ N 2066365, E 21 B 37/00, опубл. 10.09.96, бюл. N 25, которое содержит ударник и упругий излучатель. В качестве ударника использован импульсный гидропневмопривод. Излучатель преобразует импульсные нагрузки в молекулярно-волновые колебания.
Недостатком этого устройства является мощное ударное воздействие на насосно-компрессорную трубу (НКТ) в небольшом замкнутом пространстве, что вызывает пластические деформации в трубах и может привести даже к их разрушению. Эффективность достигается за счет дополнительного использования наряду с молекулярно-волновыми колебаниями механического и химического воздействия на скважину. Известно принятое за прототип "Устройство для акустического воздействия на призабойную зону продуктивных пластов", патент РФ N 2066970, E 21 B 43/25, опубл. 20.01.95, бюл. N 2, содержащее наземный блок, соединенный посредством кабеля со скважинным прибором, в котором размещены генератор и акустический излучатель, залитый трансформаторным маслом.
Данное устройство распространяет акустическую волну только в осевом направлении, не обеспечивает воздействия на весь пласт залегания и, кроме того, заливка маслом излучателя вызывает потери акустической мощности, учитывая это, можно сделать вывод о недостаточной эффективности работы устройства.
Предлагаемое устройство решает задачу повышения эффективности воздействия на скважину, призабойную зону и на весь пласт залегания за счет расширения области акустического воздействия, кроме того, устройство отличается простотой конструкции, несложностью при эксплуатации и высокой производительностью.
Задача с достижением технического результата решается за счет того, что устройство для акустического воздействия на нефтегазоносный пласт содержит наземный блок управления, соединенный посредством кабеля со скважинным прибором, состоящим из генератора, акустического излучателя и датчика, а скважинный прибор выполнен в виде двух частей, соединенных кабелем, в верхней части размещен генератор, а в нижней, сообщающейся с окружающей средой, - датчик и по крайней мере один акустический излучатель, который снабжен хотя бы одним, установленным соосно с ним отражателем акустических волн, имеющим коническую поверхность, обращенную вершиной к излучателю с углом при вершине, равным 90 град., а расстояние между торцевой поверхностью излучателя и вершиной конической поверхности отражателя акустических волн - a выбирают из условий образования стоячей волны в среде по формуле:
a = nλ/2-b,
где n = 1,2,3...;
λ - длина волны,
b - внутренний радиус скважинной трубы.
Нижняя часть скважинного прибора оканчивается акустическим концентратором, наконечник которого может быть выполнен с дискообразным пояском, предназначенным для механической очистки стенок от отложений;
нижняя часть скважинного прибора оканчивается эхолотом;
нижняя часть скважинного прибора сообщается с окружающей средой посредством выполненных в стенке корпуса прямоугольных окон в зонах размещения отражателей акустических волн.
Устройство поясняется чертежами.
На фиг. 1 изображена блок-схема устройства;
На фиг. 2 изображен общий вид устройства.
На фиг. 3 изображен разрез по А-А.
Устройство состоит (фиг. 1) из наземной аппаратуры 1, соединенной кабелем 2 со скважинным прибором 3, который разделен на две части 4 и 5, соединенные кабелем 6, в верхней части 4 расположен генератор 7 (фиг. 2), а в нижней 5 - датчик и акустические излучатели. Нижняя часть 5 скважинного прибора содержит излучатели акустических волн, выполненные в виде пьезокерамических излучателей (пьезоизлучатели) 8, 9, 10, по обе стороны пьезоизлучателей 8 и 9 соосно установлены отражатели акустических волн 11, имеющие коническую поверхность с углом при вершине, равным 90 град., обращенную вершиной к пьезоизлучателям. Пьезокерамический излучатель 10 смонтирован посредством шпильки 12 совместно с конусообразным наконечником 13, образуя акустический концентратор, для увеличения амплитуды вибрации. В верхнем участке части 5 скважинного блока расположен датчик акустических колебаний 14. На фиг. 3 показано расположение прямоугольных окон в корпусе части 5 скважинного прибора, которые способствуют уменьшению потерь мощности излучения.
Расстояние - a (фиг. 2) выбирают из условия образования стоячей волны в пространстве между пьезоизлучателем 9, отражателем 11 и стенкой скважинной трубы 15 по формуле:
a = nλ/2-b,
где n = 1,2,3...;
λ - длина бегущей волны;
b - внутренний радиус скважинной трубы.
Длину бегущей волны определяют по формуле:
λ = vT или λ = v/ν,
где T - период колебаний,
v - скорость распространения акустической волны, зависящая от свойств среды ее плотности, упругости и пр., она определяется экспериментально или по имеющимся справочным данным,
ν - частота колебаний.
Например, при частоте генератора, питающего пьезоизлучатели 20 - 30 кГц, скорости распространения акустической волны v = 1800 м/сек и внутреннем радиусе трубы b = 0,05 м, расстояние a = 0,04-0,01 м при n = 2.
В устройстве предусмотрена изоляция всех элементов, отвечающая требованиям искрозащиты, а также обеспечивающая надежную работу при наличии колебаний температур и агрессивности сред.
Устройство работает следующим образом.
Полностью смонтированный и соединенный с наземной аппаратурой скважинный прибор 3 подвергают проверке на работоспособность, при этом наземная аппаратура 1 работает в режиме диагностики и выдает сообщение о характере неисправности либо подтверждает возможность работы. После этого его опускают в скважину и включают электропитание. Одновременно работают все пьезоизлучатели 8, 9 и 10 и датчик 14. Акустический концентратор 13 вибрирует, действуя как пробойник, и обеспечивает продвижение прибора вниз по скважине, осуществляет разрушение и одновременно соскабливание парафиновых наслоений со стенок НКТ выполненным на его поверхности дискообразным пояском (на чертеже не показан). Разделение погружаемого прибора на две части 4 и 5, соединенные гибким кабелем 6, позволяет такой конструкции продвижение по изогнутым участкам НКТ. Датчик 14 сигнализирует на наземную аппаратуру 1 о проникновении акустических волн. Обратная связь через датчики обеспечивает корректировку оптимального режима воздействия на среду по интенсивности и времени акустического излучения.
Наземная аппаратура 1 учитывает информацию и от других датчиков о параметрах окружающей среды, а именно: температуре, давлении, расходе нефти или газа и пр. (на чертеже не показаны). Погружаемый прибор 3 может быть оснащен головным эхолотом, который будет контролировать дистанцию от прибора до дна скважины и позволит избежать удара о дно. Вертикальные акустические волны, которые исходят от пьезоизлучателей 8 и 9, отражаются "разворачиваются" отражателями 11 на 90 град., превращаясь в горизонтально направленные акустические волны, и образуют дополнительные зоны излучения, увеличивая таким образом область акустического воздействия. При передаче и под воздействием энергии от пьезоизлучателей 8 и 9 в виде "развернутой" горизонтально направленной акустической волны, частоты среды начинают совершать колебательные движения, а сама среда нагревается. Поскольку стенка НКТ 15 является преградой на пути распространения волны, то происходит наложение (интерференция) прямой и отраженной волн, имеющих одинаковую частоту и амплитуду. Акустическая волна проходит путь a+b = nλ/2 , длина которого кратна половине длины акустической волны, что является условием образования стоячей волны. В определенные моменты времени амплитуды прямой и отраженной волны складываются. Между пучностями скоростей частиц появляются узлы деформации, образуется стоячая волна, вдвое увеличивающая смещение частиц среды. Таким образом, механическим путем происходит изменение состояния среды, разрушается гидро-смоло-парафиновый слой и повышается выход нефти или газа. Конструкция устройства позволяет за счет образования стоячей волны повысить интенсивность разрушения парафионового слоя, а следовательно, ускорить процесс обработки скважины и сделать его высокоэффективным без увеличения мощности генератора. Увеличение амплитуды акустического излучения вызывает в среде явление кавитации, которое сопровождается резким кратковременным возрастанием давления, и способствует интенсивному очищению стенок НКТ.
Длина пути a + b будет одинаковой от любой точки торцевой поверхности пьезоизлучателя, т. к. конусная поверхность отражателя имеет наклон к оси устройства 45 град. Конструкция устройства обеспечивает режим образования стоячей волны на участках с различными диаметрами труб скважины. На участке НКТ режим стоячей волны обеспечивается длиной пути a + b в направлении: пьезоизлучатель 8 - отражатель 11 - внутренняя стенка НКТ 15. После прохождения прибором 5 участка НКТ аналогичный процесс происходит в пространстве, ограниченном обсадной колонной, и аналогичное эффективное акустическое воздействие осуществляется вторым пьезоизлучателем 9, по пути a + b, подобранного из расчета образования стоячей волны в направлении: пьезоизлучатель 9 - отражатель 11 - внутренняя стенка обсадной колонны (не показана).
При попадании в зону перфорации оба пьезоизлучателя 8 и 9 начинают работать в режиме бегущей волны, которая распространяется в горизонтальном направлении и через перфорацию далеко проникает в продуктивный пласт, оказывая воздействие на весь пласт залегания, повышая продуктивность сразу нескольких скважин. В этом режиме оптимизация процесса осуществляется варьированием частоты питания излучателей.
Предлагаемое устройство оказывает эффективное воздействие не только на скважину, ликвидируя гидро-смоло-парафиновый слой, и призабойную зону, стабилизуя ее фильтрационные свойства, но и на весь нефтегазоносный пласт, повышая его продуктивность более чем на 20 - 40%. Устройство обеспечивает увеличение эффективности воздействия за счет расширения области распространения акустических волн и высокопроизводительную работу в автоматическом режиме при помощи современного программного обеспечения, оно надежно, ремонтопригодно и не требует остановки скважины. Макетные образцы прошли испытания на скважинах Федоровского месторождения в Западной Сибири.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АКУСТИЧЕСКОГО ВОЗДЕЙСТВИЯ НА НЕФТЕГАЗОНОСНЫЙ ПЛАСТ | 1998 |
|
RU2140534C1 |
УСТРОЙСТВО ДЛЯ АКУСТИЧЕСКОГО ВОЗДЕЙСТВИЯ НА НЕФТЕГАЗОНОСНЫЙ ПЛАСТ | 2001 |
|
RU2191258C1 |
СПОСОБ ДОБЫЧИ ВЫСОКОВЯЗКОЙ НЕФТИ | 2003 |
|
RU2237154C1 |
СПОСОБ РАЗРУШЕНИЯ И ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ ОТЛОЖЕНИЙ И ПРОБОК В НЕФТЕГАЗОДОБЫВАЮЩИХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2012 |
|
RU2503797C1 |
СКВАЖИННЫЙ АКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ | 2001 |
|
RU2196217C2 |
СПОСОБ ДОБЫЧИ НЕФТИ | 2000 |
|
RU2162516C1 |
СПОСОБ СЕЙСМОАКУСТИЧЕСКИХ ИССЛЕДОВАНИЙ В ПРОЦЕССЕ ДОБЫЧИ НЕФТИ | 2012 |
|
RU2526096C2 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ, СПОСОБ КРЕКИНГА НЕФТИ И УСТРОЙСТВО ДЛЯ ИХ РЕАЛИЗАЦИИ | 2003 |
|
RU2285793C2 |
СПОСОБ УЛЬТРАЗВУКОВОЙ ИНТЕНСИФИКАЦИИ ДОБЫЧИ НЕФТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2016 |
|
RU2630012C1 |
СПОСОБ ДОБЫЧИ ВОДЫ | 2004 |
|
RU2273730C1 |
Устройство для акустического воздействия на нефтегазоносный пласт относится к нефтегазовой промышленности и может быть использовано для ликвидации гидро-смоло-парафиновых отложений в скважинах, повышения продуктивности всего пласта, а также проницаемости после бурения и ремонта. Устройство содержит наземный блок управления, соединенный посредством кабеля со скважинным прибором, состоящим из генератора, акустического излучателя и датчика. Скважинный прибор выполнен в виде двух частей, соединенных кабелем. В верхней части размещен генератор, а в нижней, сообщающейся с окружающей средой, -датчик. По крайней мере один акустический излучатель снабжен хотя бы одним, установленным соосно с ним отражателем акустических волн. Отражатель имеет коническую поверхность с углом при вершине 90 град., обращенную вершиной к излучателю. Расстояние от торца излучателя до поверхности отражателя выбрано из условия образования стоячей волны в скважинной трубе. Устройство решает задачу повышения эффективности воздействия на скважину, призабойную зону и на весь пласт залегания за счет расширения области акустического воздействия. 4 з.п.ф-лы, 3 ил.
a = nλ/2-b,
где n = 1,2,3...;
λ - длина волны;
b - внутренний радиус скважинной трубы.
УСТРОЙСТВО ДЛЯ АКУСТИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПРОДУКТИВНЫХ ПЛАСТОВ | 1990 |
|
RU2026970C1 |
Аппаратура для термоакустического воздействия на нефтяной пласт | 1981 |
|
SU989048A1 |
RU 95107913 A1, 20.04.97 | |||
RU 95114542 A1, 27.01.96 | |||
СПОСОБ УВЕЛИЧЕНИЯ ДОБЫЧИ НЕФТИ ИЗ НЕФТЯНОГО КОЛЛЕКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2097544C1 |
US 4558737 A, 17.12.85 | |||
US 5396955 A, 14.03.95 | |||
Домовый номерной фонарь, служащий одновременно для указания названия улицы и номера дома и для освещения прилежащего участка улицы | 1917 |
|
SU93A1 |
Авторы
Даты
1999-10-27—Публикация
1998-03-11—Подача