СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ПРИ НЕРАВНОМЕРНОМ ДВИЖЕНИИ ЖИДКОСТИ Российский патент 1999 года по МПК E21B47/10 G01F1/66 

Описание патента на изобретение RU2140538C1

Изобретение относится к области нефтедобычи и может быть использовано для контроля количества жидкости, протекающей по трубопроводу, и производительности нефтяных скважин, в частности добывающих, оборудованных штанговыми глубинными насосами (ШГН).

Известен тахометрический способ измерения расхода жидкости при неравномерном ее движении, включающий измерение скорости прохождения порции жидкости через вращающийся элемент, времени прохождения каждой порции и последующую обработку результатов (Книга: Кремлевский П.П. "Расходомеры и счетчики количества", Л., "Машиностроение", 1989, стр. 259-262).

Более близок к предлагаемому "Способ измерения расхода при неравномерном движении жидкости", включающий измерение времени прохождения жидкости через известное сечение, скорости этого прохождения и последующую обработку полученных результатов, причем скорость прохождения жидкости определяют по скорости вращения подвижного элемента в трубе известного сечения, а время прохождения - пропорционально числу оборотов этого элемента. (Книга: Исакович Р. Я. и др. "Контроль и автоматизация добычи нефти и газа", М.: Недра, 1976, стр.103-105).

Аналогу и прототипу присущи общие недостатки, вытекающие из особенностей технической реализации способа. Сюда можно отнести сложность изготовления узлов вращающихся элементов измерителей, невысокую надежность эксплуатации опытных узлов вращения, необходимость установки вращающихся элементов внутри трубопроводов со средой различной степени агрессивности и вязкости, а также качественные недостатки, связанные с инерционностью работы измерительных элементов при различных скоростях прохождения порций жидкости.

Задачей изобретения является упрощение процесса контроля расхода жидкости, протекающей по трубопроводу.

Поставленная задача достигается тем, что согласно способу измерения расхода при неравномерном движении жидкости, включающему измерение времени прохождения жидкости через известное сечение, скорости этого прохождения и последующую обработку результатов, время прохождения определяют по наличию акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, а скорость прохождения жидкости определяют по частоте возникновения порций акустических шумов, вызываемых неравномерностью движения жидкости.

Исследования патентной и научно-технической литературы показали, что подобная совокупность существенных признаков является новой и ранее не использовалась, а это в свою очередь позволяет сделать заключение о соответствии технического решения критерию "новизна".

На прилагаемом чертеже представлена блок-схема установки, реализующей способ.

Установка взаимодействует с нефтяной скважиной с колонной насосно-компрессорных труб (НКТ) 1, внутри которой размещена колонна штанг 2. К нижнему (по чертежу) концу колонны 2 прикреплен плунжер 3 насоса с системой клапанов 4. Верхний конец колонны 2 закреплен на станке-качалке скважины (на чертеже не показан). К верхней, устьевой части НКТ 1 подсоединена выкидная труба 5 с участком известного сечения 6, соединенная с трубопроводом 7 общей системы сбора жидкости. К внешней части трубы 5, на участке известного сечения 6, прикреплен акустический датчик-преобразователь 8, причем крепление датчика-преобразователя 8 обеспечивает акустический контакт его с жидкостью внутри трубы 5. Датчик- преобразователь 8 электрически связан с блоком обработки 9, информация с которого поступает на цифровое табло 10.

Непрерывными стрелками на чертеже указаны направления движения колонны штанг 2. Пунктирными стрелками показано направление движения жидкости по НКТ в выкидную трубу 5 и трубопровод системы сбора 7.

Измерение расхода по заявляемому способу рассмотрим на примере работы нефтяной скважины, оборудованной станком-качалкой со штанговым глубинным насосом ШГН (см. чертеж).

В режиме эксплуатации колонна штанг 2 совершает возвратно-поступательное движение в вертикальном направлении. Плунжер 3 с системой клапанов 4 перемещается в НКТ 1. При движении плунжера 3 вниз система клапанов 4 обеспечивает заполнение его жидкостью скважины, заполняющей пространство под плунжером. Во время движения вверх происходит подъем столба жидкости над плунжером 3 и выброс ее в выкидную трубу 5. Величина выбрасываемой порции жидкости зависит от степени заполнения жидкостью плунжера 3. В зависимости от технических и пластовых условий эта величина может меняться в течение каждого цикла движения колонны штанг 2.

Появление каждой порции жидкости в известном сечении 6 трубы 5 вызывает изменение частотного спектра шумов в нем и появление специфических акустических шумов (трение жидкости о стенки трубы, газопроявление и т. п.). В момент появления этих шумов датчик-преобразователь 8 воспринимает их, преобразует в электрические сигналы и посылает в блок обработки 9. По окончании прохождения порции жидкости через известное сечение 6 специфические акустические шумы пропадают и в результате этого датчик-преобразователь 8 прекращает подачу выходного электрического сигнала в блок обработки 9. По завершении временного интервала измерений блок обработки 9 выдает на табло 10 результат измерения в соответствующих единицах измерения.

Присутствие на выходе датчика-преобразователя 8 электрического сигнала определяет время прохождения порции жидкости через известное сечение участка 6. Это время зависит от скорости движения - выталкивания жидкости плунжером 3, т.е. числа качаний в минуту станка-качалки, которое задают при эксплуатации скважины, а также от наполнения плунжера 3 жидкостью, которое практически всегда неодинаково, что вызывает отличие каждой порции жидкости от другой.

За каждый временной интервал измерений через известное сечение 6 проходит количество порций жидкости со средней скоростью, пропорциональной частоте их прохождения в течение этого интервала, а так как прохождение порции определяют по наличию специфического акустического шума, то эту скорость определяют по частоте возникновения этого шума.

В течение всего временного интервала измерений блок обработки 9 преобразует каждый приходящий от датчика-преобразователя 8 электрический сигнал от соответствующей порции жидкости в пропорциональную времени ее прохождения информацию, которая затем в виде результата измерения поступает на цифровое табло 10.

Использование предлагаемого изобретения позволит в 3,5 раза сократить затраты на проведение технологических мероприятий по контролю производительности нефтяных скважин, повысить надежность и достоверность этого контроля.

Похожие патенты RU2140538C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ПРИ НЕПРЕРЫВНОМ ДВИЖЕНИИ ЖИДКОСТИ В ТРУБОПРОВОДЕ 2000
  • Герасимов Э.Л.
  • Валовский В.М.
  • Нугманов В.Г.
  • Лобода И.И.
RU2178076C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМНОГО РАСХОДА ЖИДКОСТИ В ТРУБОПРОВОДЕ 2001
  • Герасимов Э.Л.
  • Валовский В.М.
  • Лобода И.И.
RU2195633C1
СКВАЖИННЫЙ ШТАНГОВЫЙ НАСОС 1997
  • Тахаутдинов Ш.Ф.
  • Гарифов К.М.
  • Жеребцов Е.П.
  • Кадыров А.Х.
  • Залятов М.М.
  • Зиякаев З.Н.
  • Саблин И.В.
RU2138620C1
СКВАЖИННЫЙ ШТАНГОВЫЙ НАСОС 1997
  • Тахаутдинов Ш.Ф.
  • Гарифов К.М.
  • Жеребцов Е.П.
  • Кадыров А.Х.
  • Залятов М.М.
  • Зиякаев З.Н.
  • Саблин И.В.
RU2138621C1
СКВАЖИННЫЙ ШТАНГОВЫЙ НАСОС 1998
  • Тахаутдинов Ш.Ф.
  • Гарифов К.М.
  • Жеребцов Е.П.
  • Кадыров А.Х.
  • Залятов М.М.
  • Зиякаев З.Н.
  • Саблин И.В.
RU2138687C1
УСТРОЙСТВО ДЛЯ ИМПЛОЗИОННОГО ВОЗДЕЙСТВИЯ НА ПЛАСТ 1996
  • Тахаутдинов Ш.Ф.
  • Гарифов К.М.
  • Жеребцов Е.П.
  • Кадыров А.Х.
RU2114989C1
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ НЕФТЯНОГО ПЛАСТА 1999
  • Орлов Г.А.
  • Мусабиров М.Х.
RU2172401C2
УСТРОЙСТВО ДЛЯ РАЗОБЩЕНИЯ МЕЖТРУБНОГО ПРОСТРАНСТВА СКВАЖИНЫ, ОБОРУДОВАННОЙ ЗАЦЕМЕНТИРОВАННЫМ ХВОСТОВИКОМ 1999
  • Габдуллин Р.Г.
  • Абдрахимов Т.З.
  • Страхов Д.В.
  • Оснос В.Б.
  • Салахова З.Р.
RU2162511C1
Способ передачи телеметрических сигналов при эксплуатации добывающих скважин штанговыми глубинными насосами и система для его реализации 2022
  • Алимбеков Роберт Ибрагимович
  • Алимбекова Софья Робертовна
  • Акшенцев Валерий Георгиевич
  • Енгалычев Ильгиз Рафекович
  • Кадыров Руслан Фаритович
  • Шулаков Алексей Сергеевич
  • Зейгман Юрий Вениаминович
RU2793933C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ 1999
  • Ганиев Г.Г.
  • Шаяхметов Ш.К.
  • Абдулмазитов Р.Г.
  • Хамзин А.А.
  • Лыков В.И.
  • Шаяхметов А.Ш.
RU2171369C2

Реферат патента 1999 года СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ПРИ НЕРАВНОМЕРНОМ ДВИЖЕНИИ ЖИДКОСТИ

Изобретение относится к области нефтедобычи и может быть использовано для контроля количества жидкости, протекающей по трубопроводу, и производительности нефтяных скважин, в частности добывающих, оборудованных штанговыми глубинными насосами /ШГН/. Задачей изобретения является упрощение процесса контроля расхода жидкости, протекающей по трубопроводу. Это достигается тем, что способ включает измерение времени прохождения жидкости через известное сечение, скорости этого прохождения и последующую обработку результатов. Новым является то, что время прохождения определяют по наличию акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, а скорость прохождения жидкости определяют по частоте возникновения порций акустических шумов, вызываемых неравномерностью движения жидкости. Использование позволит в 3,5 раза сократить затраты на проведение технологических мероприятий по контролю производительности нефтяных скважин, повысить надежность и достоверность этого контроля. 1 ил.

Формула изобретения RU 2 140 538 C1

Способ измерения расхода при неравномерном движении жидкости, включающий измерение времени прохождения жидкости через известное сечение, скорости этого прохождения и последующую обработку полученных результатов, отличающийся тем, что время прохождения определяют по наличию акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, а скорость прохождения жидкости определяют по частоте возникновения порций акустических шумов, вызываемых неравномерностью движения жидкости.

Документы, цитированные в отчете о поиске Патент 1999 года RU2140538C1

Исакович Р.Я., Кучин Б.Л., Попадько В.Е
Контроль и автоматизация добычи нефти и газа
- М.: Недра, 1976, с.103 - 105
Кремлевский П.П
Расходомеры и счетчики количества
- Л.: Машиностроение, 1989, с.259 - 262
Способ определения расхода жидкости в скважине 1980
  • Барсук Евгений Львович
  • Подзин Леонид Иванович
SU953199A1
Способ измерения расходов компонентов продукции нефтяной скважины 1991
  • Браго Евгений Николаевич
  • Царев Андрей Владимирович
SU1831565A3
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ФАЗ ГАЗОЖИДКОСТНОГО ПОТОКА 1996
  • Браго Е.Н.
  • Ермолкин О.В.
  • Карташов В.Ю.
RU2105145C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДЕБИТА НЕФТЯНОЙ СКВАЖИНЫ 1992
  • Хазиев Н.Н.
  • Сыртланов А.Ш.
  • Газизов М.Г.
  • Зайнашев Р.А.
RU2054540C1
Скважинный расходомер 1988
  • Хамадеев Эдуард Тагирович
  • Белышев Григорий Алексеевич
  • Ишбулатов Флюр Хамитович
SU1606691A1
ГЛУБИННЫЙ РАСХОДОМЕР 0
  • Б. А. Леонов, Ю. Д. Вальковский Г. Н. Середе
SU275006A1
Скважинный расходомер 1987
  • Ковшов Геннадий Николаевич
  • Филин Николай Иванович
  • Прищепов Сергей Константинович
  • Александров Станислав Сергеевич
SU1578479A1
Устройство для измерения расхода жидкости 1985
  • Ивасив Василий Михайлович
  • Грещишин Владимир Иосифович
  • Вацык Богдан Алексеевич
  • Возняк Мирослав Петрович
  • Кушнир Петр Иванович
SU1337667A1
Устройство для измерения дебита скважины 1988
  • Кричке Владимир Оскарович
  • Ширяев Леонид Афанасьевич
  • Самсонов Александр Гурьевич
  • Шмуклер Александр Соломонович
SU1571228A1
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Леонов В.А.
  • Шарифов М.З.
  • Елин Н.Н.
  • Леонова Л.В.
RU2013538C1

RU 2 140 538 C1

Авторы

Герасимов Э.Л.

Тахаутдинов Ш.Ф.

Вышенский М.В.

Залятов М.М.

Юсупов И.Г.

Ахметвалеев Р.Н.

Доброскок Б.Е.

Кострач В.И.

Соколов В.М.

Даты

1999-10-27Публикация

1998-01-08Подача