Изобретение относится к компрессоростроению. В качестве аналога (прототипа), наиболее близкого к заявляемому изобретению, можно использовать электродинамический компрессор, N 306277, 1971 г., МПК F 04 B 35/04. К недостаткам этого устройства можно отнести наличие сил трения в паре плунжер-цилиндр, достаточно большую массу подвижных элементов (плунжера, катушки, пружин), неуравновешенность механизма (вибрации). Характерными, существенными признаками аналога (прототипа) и заявляемого изобретения является преобразование взаимодействия радиального магнитного поля магнитной системы на базе постоянного аксиального кольцевого магнита и магнитного поля катушки с переменным током в энергию колебательного движения последней.
Задачей изобретения является обеспечение бесшумной работы промышленных или бытовых холодильников с повышенным КПД при низкой стоимости изготовления компрессора.
В компрессоре используется газодинамическая вибрационная схема, основанная на принципе кинетического сжатия и объемного нагнетания газа при колебательном движении поршня-сопла в звуковом диапазоне частот.
Техническое решение поставленной задачи достигается тем, что в компрессоре, содержащем магнитную систему, обеспечивающую радиальное магнитное поле, поршень выполнен в виде электромагнитной катушки, подключенной к источнику переменного тока, расположен в радиальном магнитном поле, имеет форму кольца с конической внутренней поверхностью, составляющей сопловую часть поршня и образующей вместе с неподвижным осевым элементом магнитной системы (керном) кольцевое коническое сопло с расширением в сторону всасывающей камеры, прикреплен к корпусу компрессора с помощью двух пружинных мембран, ограничивающих перемещение поршня при его колебательном движении, разделяющих камеру нагнетания от камеры всасывания и подводящих электрическую энергию к электромагнитной катушке, при этом компрессор выполнен по встречной акустической схеме включения электромагнитных катушек, созданной симметричным расположением поршней с синхронным колебательным движением, и имеет замкнутые газовые объемы внутри сравнительно массивных оболочек.
С целью увеличения производительности на поршне устанавливается клапан со следующими вариантами конструктивного исполнения:
лепесткового типа - устанавливается в сопловой части поршня, состоит из конической клапанной решетки и пружинящего лепесткового элемента и формирует кольцевое коническое сопло,
инерционного действия - устанавливается на поршне со стороны нагнетания, выполнен в виде металлического кольца и конической или цилиндрической пружины с соприкасающимися в свободном состоянии витками, один из которой закреплен на поршне со стороны нагнетания, а другой - на металлическом кольце, скользящем по корпусу перед поршнем,
принудительного действия - устанавливается на поршне со стороны нагнетания, состоит из цилиндрической электромагнитной катушки, скользящей по керну перед поршнем при подаче на ее обмотку электрического напряжения в противофазе к напряжению на катушке поршня, и конической или цилиндрической пружины с соприкасающимися в свободном состоянии витками, расположенной между указанными катушками с жестким креплением ее концов на цилиндрической катушке и поршне.
Регулирование производительности компрессора обеспечивается изменением частоты и силы электрического тока с помощью перестраиваемого низкочастотного генератора.
Сущность изобретения поясняется чертежами, где представлены:
фиг. 1 - схема компрессора (вариант поршня-сопла без клапана).
фиг. 2 - схема компрессора (вариант поршня-сопла с лепестковым клапаном),
фиг. 3 - схема компрессора (вариант поршня-сопла с клапаном инерционного действия),
фиг. 4 - схема компрессора (вариант поршня-сопла с клапаном принудительного действия).
Возможность осуществления изобретения рассматривается на разработанной конструкции в соответствии с проведенным теоретическим исследованием числовых значений параметров компрессора по разработанной автором методике расчета.
Компрессор имеет следующие расчетные параметры:
Газ P 22
Производительность (0,525 - 1,4) 20 кг/с,
Степень сжатия 4,75
Потребляемая электрическая мощность (30 - 60) Вт,
КПД (0,95 - 0,75)
Оптимальный режим работы
- диапазон частот (20 - 40) Гц
-амплитуда колебаний поршня 2 мм.
Схема компрессора для варианта поршня-сопла без клапана представлена на фиг. 1. В силу симметричности конструкции проводится описание ее правой половины. Магнитная система, создающая радиальное магнитное поле в рабочем зазоре, состоит из постоянного кольцевого магнита 1, обвязанного магнитопроводом, включающим в себя керн 2, шайбу 3 с всасывающими окнами и кольцевой полюсной наконечник 4. Колебательная система выполнена в виде поршня 5, прикрепленного к полюсному наконечнику 4 с помощью двух мембран 6, являющихся одновременно как упругими элементами, ограничивающими перемещение поршня, так и тоководами, подводящими электрическую энергию на электромагнитную катушку. Камера нагнетания образована кольцевым корпусом 7 и двумя магнитными системами. При перемещении поршня, имеющего форму кольца с конической внутренней поверхностью, в сторону всасывающего окна происходит процесс сжатия газа в сопловой части поршня, одновременно со стороны камеры нагнетания происходит процесс обратного расширения. При перемещении поршня 5 в сторону камеры нагнетания происходит процесс всасывания со стороны конической части поршня и одновременно процесс нагнетания сжатого газа.
Схема компрессора с лепестковым клапаном, установленным в сопловой части поршня, представлена на фиг. 2. Там же показаны эскизы составных элементов клапана: клапанной решетки 8 и пружинного конического лепесткового элемента 9 в свернутом и раскрытом состояниях. Конструкция клапана, обеспечивая работу компрессора с увеличенной на порядок производительностью, не нарушает процесса кинетического сжатия газа в сопловой части поршня.
Схема компрессора с клапаном инерционного действия, установленным на поршне со стороны нагнетания, представлена на фиг. 3. Клапан состоит из конической или цилиндрической пружины 10 с соприкасающимися в свободном состоянии витками и металлического кольца 11, имеющего возможность скользить по керну в осевом направлении при работе компрессора и выполняющего функцию инерционного демпфера, обеспечивающего растягивание пружины в процессе сжатия газа и сжатие пружины в процессе нагнетания. Таким образом, в процессе сжатия пружина 10 образует межвитковые каналы, обеспечивающие прохождение сжатого газа в камеру нагнетания. Концы пружины жестко закреплены на кольце 11 и на поршне 5 со стороны нагнетания.
Схема компрессора с клапаном принудительного действия, установленного на поршне 5 со стороны нагнетания, представлена на фиг. 4. Клапан состоит из конической или цилиндрической пружины 12 с соприкасающимися в свободном состоянии витками и цилиндрической катушки 13, перемещающейся по керну в осевом направлении при подаче электрического напряжения на ее обмотку в противофазе к напряжению на катушке поршня 5 и растягивающей пружину 12 в процессе сжатия газа, а в процессе нагнетания - сжимающей пружину.
Степень повышения давления определяется конусностью сопловой части поршня и теоретически имеет дискретное значение.
название | год | авторы | номер документа |
---|---|---|---|
Компрессор волнового кинетического сжатия | 2018 |
|
RU2768968C2 |
МАГНИТНЫЙ РОТОРНО-ПОРШНЕВОЙ КОМПРЕССОР | 1998 |
|
RU2135829C1 |
КОМПРЕССОР КИНЕТИЧЕСКОГО СЖАТИЯ | 1997 |
|
RU2132492C1 |
ТУРБОВИХРЕВОЙ ДВИГАТЕЛЬ | 1997 |
|
RU2131529C1 |
ГИДРОСИСТЕМА ЭЛЕКТРОКАПЛЕСТРУЙНОГО ПРИНТЕРА И ЕЕ ЭЛЕМЕНТЫ | 2002 |
|
RU2212633C1 |
УПЛОТНИТЕЛЬНЫЙ ЭЛЕМЕНТ, СОПЛОВОЕ УСТРОЙСТВО ГАЗОВОЙ ТУРБИНЫ И ГАЗОВАЯ ТУРБИНА | 2009 |
|
RU2511935C2 |
КОМПРЕССОР ПОРШНЕВОЙ С КУЛАЧКОВЫМ РАБОЧИМ МЕХАНИЗМОМ | 1997 |
|
RU2132485C1 |
СПОСОБ ИМПУЛЬСНО-СТРУЙНОГО ВОЗДЕЙСТВИЯ НА СКВАЖИНУ И ПРОДУКТИВНЫЙ ПЛАСТ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2002 |
|
RU2206730C1 |
РЕАКТОР И КАВИТАЦИОННЫЙ АППАРАТ | 2007 |
|
RU2371245C2 |
СПОСОБ ПРИВОДА КОЛЕС ШАССИ САМОЛЕТА И ШАССИ САМОЛЕТА С ПРИВОДОМ КОЛЕС | 2011 |
|
RU2495792C2 |
Компрессор предназначен для сжатия газа в звуковом диапазоне и может быть использован в холодильной технике. Магнитная система обеспечивает радиальное магнитное поле. Поршень расположен в радиальном магнитном поле и выполнен в виде электромагнитной катушки. Поршень имеет форму кольца с конической внутренней поверхностью, образующей вместе с неподвижным осевым элементом магнитной системы (керном) кольцевое коническое сопло с расширением в сторону всасывающей камеры. Поршень прикреплен к корпусу на двух токоподводящих пружинных мембранах, ограничивающих амплитуду колебательного движения. В компрессоре используется кинетическое сжатие газа в сопловой части поршня и объемное нагнетание в торцевой при колебательном движении поршня-сопла в постоянном радиальном магнитном поле. Таким выполнением обеспечивают полную уравновешенность, снижение шума, повышение экономичности и простоту изготовления компрессора. 3 з.п. ф-лы, 4 ил.
ЭЛЕКТРОДИНАМИЧЕСКИЙ КОМПРЕССОР | 0 |
|
SU306277A1 |
Магнитоэлектрический компрессор | 1985 |
|
SU1377454A1 |
Электромагнитная машина | 1984 |
|
SU1312246A2 |
DE 3224724 A1, 05.01.84 | |||
Электростатический вольтметр | 1981 |
|
SU995001A1 |
Авторы
Даты
1999-12-10—Публикация
1998-04-03—Подача