Изобретение относится к области бытовой техники, в частности устройств очистки воды, и может быть использовано для очистки воды до категории "питьевая" в бытовых условиях.
Реальная экологическая ситуация, сложившаяся на сегодняшний день в большинстве стран мира, заставляет искать принципиально новый подход к решению задач водоподготовки. Многие источники водозабора содержат различные органические и минеральные примеси как природного, так и антропогенного происхождения в концентрациях, значительно превышающих предельно допустимые значения. Кроме того, источники водозабора зачастую содержат в большом количестве и микробиологические загрязнения, в том числе и патогенные микроорганизмы. Это приводит к появлению угрозы эпидемий.
Используемые в настоящее время системы очистки воды практически не пригодны к решению поставленных задач. Они практически не задерживают растворенные в воде минеральные и органические соединения, а также микроорганизмы.
Использование в качестве обеззараживающего средства больших объемов хлора приводит к образованию опасных мутагенных токсикантов, в частности хлорорганических соединений. Использование для обеззараживания фтора приводит к образованию фторорганических соединений, также являющихся опасными мутагенными токсикантами. Применение для обеззараживания озона приводит к повышенной коррозии оборудования водоподготовки.
Строительство новых или капитальная реконструкция существующих очистных сооружений требуют огромных бюджетных капиталовложений.
При этом подобные очистные сооружения будут крайне неэкономичны в эксплуатации.
Реальным путем решения проблемы получения питьевой воды, соответствующей нормативам ВОЗ, является организация промышленного выпуска основанных на новых технологиях очистки воды микромодулей заводской сборки, сочетающих качество очистки воды, простоту эксплуатации и возможность изменения комплектности микромодуля в зависимости от качества исходной воды.
Известна установка для очистки воды (RU, патент 2109688, С 02 F 1/00, 1997), содержащая последовательно соединенные подводящую магистраль, узел предварительной очистки с линией отвода концентрата, снабженной дроссельным устройством, реактор-деструктор, выполненный в виде герметичного корпуса, содержащего кавитационную камеру с УЗ-излучателем и фотохимическую с источником УФ-излучения, узел сорбционной очистки и линию отвода очищенной воды потребителю. Указанная установка не может быть использована в быту, поскольку ее размеры подразумевают стационарное использование. Кроме того, наличие УЗ-обработки в условиях жилого помещения вызывает состояние дискомфорта.
Известен также бытовой фильтр для очистки воды (ЕР, 0236017, В 01 D 27/02, 1990), содержащий цилиндрический корпус с днищем и съемной крышкой, имеющий запорное устройство, присоединенные к корпусу подводящий и отводной патрубки, коаксиально расположенные относительно оси корпуса от периферии к центру соответственно фильтрующие элементы для механической и сорбционной очистки и загерметизированный по торцам элемент стерилизации воды. К сожалению, известное устройство не позволяет полностью удалить загрязнения и получить воду, соответствующую условиям, предъявляемым к питьевой воде.
Наиболее близким аналогом можно признать установку для подготовки питьевой воды (RU, патент 2104959, С 02 F 1/46, 1998), содержащий узел механической очистки, узел электрической очистки и узел сорбционной очистки, причем в качестве узла электрической очистки использован электролизер. Установку нежелательно использовать в быту, поскольку при электролизе воды образуется смесь водорода и кислорода, способных взаимодействовать между собой с взрывом, кроме того, качество очистки воды указанной установкой невелико.
Техническая задача, решаемая с использованием настоящего изобретения, состоит в разработке конструкции экономичной установки комплексной очистки воды малой производительности, пригодной для использования в бытовых условиях.
Технический результат, получаемый в результате реализации изобретения, состоит в обеспечении возможности доочистки поступающей по сетям водоснабжения воды и доведения ее качества до установленных санитарно-гигиенических нормативов питьевой воды.
Для достижения указанного технического результата предложено использовать фильтр, представляющий собой последовательно соединенные с возможностью разделения узел механической очистки, электрокоагулятор, узел сорбционной очистки и силовой модуль, содержащий понижающий трансформатор, выпрямитель переменного напряжения и средство переключения полярности на электродах электрокоагулятора, причем электрокоагулятор выполнен с электродами в виде пластин из алюминия и/или его сплавов, расположенными таким образом, что на них может быть подано напряжение до 60 В при обеспечении смены полярности электродов в течение 4 - 7 мин. Между узлом механической очистки и электрокоагулятором может быть дополнительно установлен узел озонирования. Узел озонирования может быть также установлен между электрокоагулятором и узлом сорбционной очистки. После фильтра сорбционной очистки может быть дополнительно установлен узел УФ-стерилизации. Силовой модуль соединен с электрокоагулятором и, в случае их использования, с узлами озонирования и УФ-стерилизации. Узел механической очистки может содержать набор металлических и/или полимерных сеток и/или глубинные мембранные или патронные фильтры. В качестве глубинных фильтров могут быть использованы нетканые синтетические материалы или фильтры на основе минеральных волокон. Узел сорбционной очистки может быть выполнен в виде проточной емкости, заполненной сорбентом, или в виде перфорированного цилиндра, на поверхность которого намотан рулонный сорбционный материал. В качестве сорбента могут быть использованы сорбенты минерального и/или органического происхождения и/или ионообменники. В качестве минеральных сорбентов могут быть использованы цеолиты и/или силикагели. В качестве органических сорбентов могут быть использованы активированный уголь, и/или углеродные волокна, и/или ткани из углеродных волокон, и/или энтеросорбенты. Конкретное выполнение устройства определяется качеством исходной воды и требованиями к получаемой воде.
На графическом материале приведена базовая конструкция бытового фильтра для получения питьевой воды. На графическом материале приняты следующие обозначения: узел 1 механической очистки, электрокоагулятор 2, узел 3 сорбционной очистки, силовой модуль 13. Узел 1 механической очистки содержит корпус 4 и съемную крышку 5, закрепленную любым известным способом на корпусе 4. В съемной крышке 4 выполнен штуцер для подвода очищаемой воды. Корпус 4 любым известным образом, преимущественно резьбовым, соединен с корпусом 6 электрокоагулятора 2. Место соединения корпусов 4 и 6 является точкой подвода очищенной от механических примесей воды в электрокоагулятор 2. Кроме указанного корпуса 6 электрокоагулятор 2 содержит электродные пластины 7, установленные в держателях 8. На держателях закреплены клеммы (не показаны) подвода электрического питания, установленные любым известным образом, обеспечивающим электробезопасность электрической схемы бытового фильтра. Узел 3 сорбционной очистки представляет собой корпус 9 с полостью 10, закрытой съемной крышкой 11. Корпус 9 соединен с корпусом 6 с возможностью разделения любым известным способом, преимущественно резьбовым. В полости 10 размещен сорбент 12, в частности активированный уголь.
Фильтр работает следующим образом. Водопроводную воду, предварительно прошедшую традиционный цикл очистки и обеззараживания, подают к штуцеру на крышке 5 на входе узла 1 механической очистки. Узел 1 механической очистки содержит две никелевых сетки с размером ячеек 70 х 70 мкм, между которыми установлен фильтр Петрянова. Указанная система надежно отделяет взвешенные частицы до 5 мкм и коллоидные частицы размером до 12 мкм. Затем вода поступает в электрокоагулятор 2, где происходит коагуляция органических загрязнений, а также коагуляция слаборастворимых гидроксидов металлов (железо, кальций, магний, алюминий). Режим работы электрокоагулятора 2 подбирается опытным путем по органолептическим показателям. Скоагулированные органические и неорганические соединения, а также остаточный хлор отделяются от воды при прохождении ее через узел 3 сорбционной очистки. Дополнительно узел 3 сорбционной очистки частично задерживает ионные и органические примеси.
Производительность бытового фильтра определяется производительностью узла механической очистки и узла сорбционной очистки. Расход электроэнергии определяется режимами работы электрокоагулятора.
Использование изобретения позволяет в домашних условиях получить питьевую воду, показатели которой не уступают требованиям действующего ГОСТа 2874-82.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОЧИСТКИ ВОДЫ И МОДУЛЬНОЕ УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2151106C1 |
БЫТОВОЙ ВОДООЧИСТИТЕЛЬ | 1999 |
|
RU2158234C2 |
СПОСОБ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2096342C1 |
УСТАНОВКА ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ | 2001 |
|
RU2209783C2 |
ТЕХНОЛОГИЯ СИСТЕМНО-КОМПЛЕКСНОЙ ЭЛЕКТРОКОАГУЛЯЦИОННОЙ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ И МОДУЛЬНАЯ СТАНЦИЯ "ВОДОПАД" ДЛЯ ЕЕ ОСУЩЕСТВЛЕНИЯ | 2015 |
|
RU2591937C1 |
УСТАНОВКА ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ | 2000 |
|
RU2162447C1 |
ВОДООЧИСТИТЕЛЬ | 2000 |
|
RU2171787C2 |
Установка для электрокоагуляционной очистки питьевой и сточной воды | 2020 |
|
RU2758698C1 |
УСТАНОВКА ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ | 2000 |
|
RU2170712C2 |
БЫТОВОЙ ВОДООЧИСТИТЕЛЬ | 2000 |
|
RU2171789C2 |
Изобретение предназначено для очистки воды. Фильтр содержит последовательно соединенные узел механической очистки, электрокоагулятор и узел сорбционной очистки. Электроды коагулятора выполнены в виде пластин из алюминия и/или его сплавов, расположенных так, что на них может быть подано напряжение до 60 B. Фильтр обеспечивает доочистку поступающей по сетям водоснабжения воды и доводит ее качество до установленных санитарно-гигиенических нормативов питьевой воды. 11 з.п. ф-лы, 1 ил., 1 табл.
СПОСОБ И УСТАНОВКА ДЛЯ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ | 1994 |
|
RU2104959C1 |
Электрохимическое устройство для очистки воды | 1976 |
|
SU802193A1 |
Аппарат для электрообработки растворов и пульп | 1972 |
|
SU455744A1 |
Шланговое соединение | 0 |
|
SU88A1 |
EP 0228497 A1, 15.07.1987 | |||
DE 3641365 A1, 25.08.1988 | |||
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МЕЖВАЛЬНОГО ПОДШИПНИКА КАЧЕНИЯ МНОГОВАЛЬНОЙ ТУРБОМАШИНЫ | 2002 |
|
RU2238532C2 |
Авторы
Даты
2000-06-27—Публикация
1999-03-02—Подача