Изобретение относится к энергетике, в частности к горелочным устройствам, и может быть использовано в котлах, нагревательных печах.
Известна горелка, содержащая смесительное сопло, ограничивающее проход для протекания текучей смеси, состоящей из распыленного твердого топлива и транспортирующего газа и перемещающейся в направлении топки проход, окружающий указанное смесительное сопло, для протекания газа, участвующего в сгорании, содержащего кислород, стабилизатор пламени, установленный на дальнем конце смесительного сопла (см. EP 0314928, МПК F 23 D 1/00, 1989).
Недостатком указанной горелки является недостаточное снижение окислов азота в продуктах сгорания.
Задачей изобретения является снижение содержания окислов азота в продуктах сгорания, даже если горелка имеет большую производительность.
Задача решается тем, что горелка содержит смесительное сопло, ограничивающее проход для протекания текучей смеси, состоящей из распыленного твердого топлива и транспортирующего газа и перемещающейся в направлении топки, проход, окружающий указанное смесительное сопло, для протекания газа, участвующего в сгорании, содержащего кислород, стабилизатор пламени, установленный на дальнем конце смесительного сопла, средство для протекания высокотемпературного газа, циркулирующего ниже стабилизатора пламени, и/или высокотемпературного газа, рециркулирующего ниже циркулирующего высокотемпературного газа, в указанную текучую смесь.
Кроме того, указанное средство имеет средство для формирования части с давлением ниже атмосферного в текучей смеси вблизи дальнего конца смесительного сопла и имеет средство для частичного прерывания потока текучей смеси вблизи дальнего конца смесительного сопла.
Часть стабилизатора пламени со стороны прохода для газа имеет L-образное сечение.
Горелка имеет внутренний стабилизатор пламени, расположенный внутри смесительного сопла.
Кроме того, в горелке установлена перемычка для соединения дальнего конца смесительного сопла с внутренним стабилизатором пламени, газ впрыскивается из отверстия вдоль перемычки, а отверстие расположено так, что оно направлено по касательной к внутренней периферии дальнего конца смесительного сопла.
Перемычка направлена по касательной к внутреннему стабилизатору пламени.
Стержневидный элемент расположен в радиальной центральной части смесительного сопла, а внутренний стабилизатор пламени расположен вблизи дальней оконечной части стержневидного элемента.
В горелке установлен сепаратор для отделения прохода для газа от прохода для текучей смеси.
Кроме того, задача решается тем, что горелка содержит смесительное сопло, ограничивающее проход для протекания текучей смеси, состоящей из распыленного твердого топлива и транспортирующего газа и перемещающейся в направлении топки, проход, окружающий указанное смесительное сопло для протекания газа, участвующего в сгорании, содержащего кислород, стабилизатор пламени, установленный на дальнем конце смесительного сопла, средство для подачи высокотемпературного газа, рециркулирующего ниже циркулирующего высокотемпературного газа, циркулирующего ниже указанного стабилизатора пламени, к дальней стороне стабилизатора пламени.
Также задача решается тем, что горелка содержит смесительное сопло, ограничивающее проход для протекания текучей смеси, состоящей из распыленного твердого топлива и транспортирующего газа и перемещающейся в направлении топки, проход, окружающий указанное смесительное сопло для протекания газа, участвующего в сгорании, содержащего кислород, стабилизатор пламени, установленный на дальнем конце смесительного сопла, разделяющие пластины для разделения прохода для газа на множество частей в круговом направлении наружной периферии смесительного сопла, расположенные на дальнем его конце со стороны прохода для газа стабилизатора пламени.
Кроме того, задача может решаться тем, что горелка содержит смесительное сопло, ограничивающее проход для протекания текучей смеси, состоящей из распыленного твердого топлива и транспортирующего газа и перемещающейся в направлении топки, проход, окружающий указанное смесительное сопло для протекания газа, участвующего в сгорании, содержащего кислород, стабилизатор пламени, установленный на дальнем конце смесительного сопла, кольцеобразную разделяющую пластину для разделения прохода для газа в радиальном направлении наружной периферии смесительного сопла, расположенную на дальнем конце со стороны прохода для газа стабилизатора пламени.
Направляющая часть для отклонения потока радиально наружу в проходе для газа расположена в указанном проходе для газа, а ближний конец направляющей части расположен выше разделяющей пластины или разделяющих пластин в указанной горелке.
Направляющая часть для отклонения в наружном направлении участвующего в горении содержащего кислород газа так же, как и завихряющая часть сообщения вихревого движения участвующему в горении, содержащему кислород газу расположена по меньшей мере в части указанного прохода для газа.
Площадь сечения прохода для потока в дальней оконечной части смесительного сопла прогрессивно уменьшается в направлении его дальнего конца, и установлена завихряющая часть для сообщения вихревого движения участвующему в горении, содержащему кислород газу. Регулирующее приспособление для регулирования концентрации текучей смеси расположено внутри смесительного сопла, и регулирующее приспособление расположено на части стержневидного элемента, расположенной выше выходного отверстия указанной горелки.
Стержневидный элемент является полым элементом, имеющим канал, по которому течет газ.
Приспособление для регулирования концентрации имеет наклонные противоположные оконечные части и параллельную часть, которая расположена между наклонными частями и параллельно внутренней периферийной поверхности смесительного сопла, а угол наклона наклонной части с верхней стороны приспособления для регулирования концентрации относительно оси горелки составляет от 15o до 25o и угол наклона наклонной части с дальней стороны приспособления для регулирования концентрации относительно оси горелки составляет от 6o до 18o, причем соотношение размеров r1 (r1 = d/c) наружного диаметра указанной параллельной части и длины указанной параллельной части в направлении потока газа составляет 1 < r1 < 2.
Часть с трубкой Вентури для суживания потока текучей смеси сформирована на части внутренней периферийной поверхности смесительного сопла, сформированной выше приспособления для регулирования концентрации.
Горловина горелки сформирована в стенке топки, и угол наклона направляющей части относительно оси горелки составляет от 35o до 55o, а угол наклона наклонной поверхности горловины топки относительно оси горелки составляет от 35o до 55o.
Соотношение размеров наклонной ширины направляющей части в перпендикулярном направлении относительно центральной оси горелки и расстояния между началом наклонной поверхности горловины горелки и частью, параллельной центральной оси горелки, составляет 0,5 < r2 < 1.
Проход для газа имеет обтекаемую конфигурацию. Скорость впрыскивания газа из сопел для впрыскивания газа в три раза выше, чем скорость потока текучей смеси в смесительном сопле.
Суммарная ширина струй газа, впрыскиваемого из сопел для впрыскивания газа, по существу равна от 10% до 50% длины периферийной окружности дальнего конца смесительного сопла.
Направление впрыскивания газа из каждого сопла для впрыскивания газа ориентировано в направлении высшей стороны смесительного сопла.
Скорость потока газа, впрыскиваемого из сопел для впрыскивания газа, место впрыскивания газа и направление впрыскивания газа могут изменяться в соответствии с нагрузкой на горелку, сортом твердого топлива или количеством ступеней горелок, расположенных в печи.
Газ, впрыскиваемый из сопел для впрыскивания газа, подается из низкотемпературной части или высокотемпературной части системы подачи для подачи твердого топливотранспортирующего газа.
Газ, впрыскиваемый из сопел для впрыскивания газа, подается из высокотемпературной части системы подачи при работе горелки и подается из низкотемпературной части, когда горелка выключена.
Вентилятор или компрессор установлен в системе подачи для подачи газа, впрыскиваемого из сопел для впрыскивания газа, и газ является холодным воздухом или горячим воздухом, подаваемым из выхода подогревателя для подогрева воздуха.
Газ, впрыскиваемый из сопел для впрыскивания газа, является богатым кислородом воздуха, имеющим концентрацию кислорода, большую 21%.
Средство для регулирования потока установлено в системе подачи для подачи газа, впрыскиваемого из сопел для впрыскивания газа.
Скорость потока газа, впрыскиваемого из сопел для впрыскивания газа, может изменяться в соответствии с эксплуатационными режимами горелки.
По меньшей мере одно отверстие для впрыскивания газа сформировано в сопле для впрыскивания газа в осевом направлении таким образом, что соотношение r3 (r3 = а/b) длины отверстия для впрыскивания газа b направлении оси сопла для впрыскивания газа к длине b отверстия для впрыскивания газа в направлении диаметра сопла для впрыскивания газа, равного или больше 1 (r3 ≥ 1).
Отверстие для впрыскивания газа сопла для впрыскивания газа имеет круглую конфигурацию или овальную конфигурацию.
По меньшей мере два отверстия для впрыскивания газа сформированы в сопле для впрыскивания газа, и шаг отверстий для впрыскивания газа в 2,5 раза больше диаметра отверстия для впрыскивания газа.
Газ, впрыскиваемый из сопел для впрыскивания газа, является горячим воздухом, нагретым до температуры, которая выше температуры текучей смеси.
Положения отверстий для впрыскивания газа могут изменяться в направлении оси смесительного сопла, и/или отверстия для впрыскивания газа могут передвигаться параллельно оси смесительного сопла или вокруг нее.
Инжекционные отверстия горелки расположены в выступах от перпендикуляров, отступающих от центральной оси горелки к соответствующим пластинам для стабилизации пламени.
На фиг. 1 изображен вид вертикального сечения одного предпочтительного варианта выполнения горелки;
На фиг. 2 изображен вертикальный вид спереди по линии II-II на фиг. 1;
На фиг. 3 и 4 изображены частичные виды сечений, сделанных по линии III-III и линии IV-IV на фиг. 2;
На фиг. 5 изображен вид сечения, сделанного по линии V-V на фиг.1;
На фиг. 6 изображен вид частичного сечения, демонстрирующего наружную периферийную часть кольца для стабилизации пламени, показанного на фиг. 1;
На фиг. 7 изображен вид сечения, демонстрирующий пламя горелки, показанной на фиг. 1;
На фиг. 8 изображен вид, демонстрирующий поток текучей смеси вблизи инжекционного сопла, показанного на фиг. 1;
На фиг. 9 изображен вид, демонстрирующий поток текучей смеси вблизи модифицированного инжекционного сопла;
На фиг. 10-12 изображены виды, демонстрирующие устройства модифицированных инжекционных сопел соответственно;
На фиг. 13 изображена схема, демонстрирующая котел с горелками, показанными на фиг. 1;
На фиг. 14 изображен вид вертикального сечения, демонстрирующего другой вариант выполнения горелки;
На фиг. 15 изображен вертикальный вид спереди по линии XV-XV на фиг. 14;
На фиг. 16 изображен вид вертикального сечения, демонстрирующий другой вариант выполнения горелки;
На фиг. 17 изображен вертикальный вид спереди по линии XVII-XVII на фиг. 16;
На фиг. 18 изображен вид сечения, демонстрирующего другой вариант выполнения горелки.
На фиг. 19 изображен вид вертикального сечения, демонстрирующего другой вариант выполнения горелки;
На фиг. 20 изображен вертикальный вид спереди по линии XX-XX на фиг. 19;
На фиг. 21 изображен вид вертикального сечения, демонстрирующий еще один вариант выполнения горелки, соответствующей изобретению;
На фиг. 22 изображен вертикальный вид спереди по линии XXII-XXIII на фиг. 21;
На фиг. 23 изображен вид вертикального сечения, демонстрирующий другой вариант выполнения горелки;
На фиг. 24 изображен вид в перспективе, демонстрирующий диск для разделения вторичного воздуха, показанный на фиг. 21;
На фиг. 25 изображен вид вертикального сечения, демонстрирующий еще один вариант выполнения горелки;
На фиг. 26 изображен вертикальный вид спереди по линии XXVI-XXVI на фиг. 25;
На фиг. 27 и 28 изображены виды в перспективе, демонстрирующие модифицированные пластины для разделения вторичного воздуха соответственно;
На фиг. 29-34 изображены виды в перспективе, демонстрирующие модифицированные инжекционные сопла, соответственно;
На фиг. 35 и 36 изображены виды, демонстрирующие состояние пламени, соответственно;
На фиг. 37-39 изображены виды снизу, демонстрирующие инжекционные отверстия;
На фиг. 40 изображен вид вертикального сечения, демонстрирующий еще один вариант выполнения горелки, соответствующей изобретению;
На фиг. 41 изображен вид вертикального сечения, демонстрирующий другой вариант выполнения горелки;
На фиг. 42 изображен вертикальный вид спереди по линии XXXXII-XXXXII на фиг. 41;
На фиг. 43 изображен вид поперечного сечения по линии XXXXIII-XXXXIII на фиг. 41.
На фиг. 44 изображен вид частичного разреза, демонстрирующий поток газа вблизи перемычки;
На фиг. 45 изображен вертикальный вид спереди, демонстрирующий модифицированные перемычки.
В горелке, показанной на фиг. 1, текучая смесь 1, содержащая тонко распыленный горючий уголь и транспортирующий воздух, подается в топку 4 по проходу для текучей смеси, ограниченному смесительным соплом 2. Стабилизатор 3 пламени, выполненный, например, в виде кольца для стабилизации пламени, размещен на дальнем конце смесительного сопла 2, причем наружная периферийная часть стабилизатора 3 пламени имеет L-образное сечение.
Воздух, участвующий в сгорании (вторичный воздух 6 или третичный воздух 9), подается из воздушной камеры 5 в зону, расположенную вокруг наружной периферии смесительного сопла 2. Средства 7 и 10 для создания завихрений образуют необходимые завихрения вторичного воздуха 6 и третичного воздуха 9, соответственно, так, чтобы были получены оптимальные условия для сгорания с низким выделением окислов азота NOx.
Третичный воздух 9, кроме того, распространяется в наружном направлении или разводится направляющей частью 11, выполненной, например, в виде направляющей пластины, так, что центральная часть пламени оказывается в состоянии обедненного содержания воздуха, т. е. состоянии обогащенного топлива. До того, как наружный периферийный воздух смешается с текучей смесью 1, скорость сгорания топлива повышается в зоне восстановления так, что сможет быть достигнуто сгорание с пониженным выделением окислов азота NOx.
Здесь воздух 21 используется в качестве газа для внутренней стабилизации пламени и подается по трубе 22 подачи газа для внутренней стабилизации пламени в коллектор 23, расположенный внутри воздушной камеры 5. Воздух 21 для внутренней стабилизации пламени далее подается к дальнему концу смесительного сопла 2 через четыре сопла 24. Воздух 21 впрыскивается из четырех инжекционных отверстий 25, примыкающих к кольцу 3 для стабилизации пламени, в направлении центральной части смесительного сопла 2 так, что формируются четыре струи 26 воздуха.
Как показано на фиг. 5, каждая воздушная струя 26 служит в качестве жесткого стабилизатора пламени и формирует циркулирующие потоки 14 на ее конце, таким образом способствуя воспламенению и стабилизации пламени.
Как показано на фиг. 6, рециркуляция высокотемпературного газа 15 происходит сразу после стабилизатора 3 пламени и способствует воспламенению и стабилизации пламени вблизи стабилизатора 3 пламени. Струи 26 воздуха, впрыскиваемые, соответственно, из инжекционных отверстий 25 воздушных сопел 24 для внутренней стабилизации пламени в направлении центральной части смесительного сопла 2, достигают несущего действия и, таким образом, часть 16 рециркулирующего горячего газа 15 протекает вдоль струй 26 воздуха в текучую смесь 1 так, что характеристики воспламенения и стабилизации пламени в ней улучшаются. Поскольку возмущение текучей смеси усиливается струями 26 воздуха, эффективность сгорания после воспламенения увеличивается.
Если скорость потока струй 26 воздуха низка, струи 26 воздуха отклоняются потоком текучей смеси 1 и, таким образом, появление струй 26 воздуха в центральной части смесительного сопла 2 задерживается. Для увеличения зоны воспламенения предпочтительно то, что скорость потока струй 26 воздуха не менее чем в три раза превышает скорость потока текучей смеси 1.
Если отношение суммарной ширины струй 26 воздуха в периферийном (по окружности) направлении к длине по окружности выходного отверстия смесительного сопла 2 велико, большая часть распыленного угля, который должен воспламеняться, увлекается в центральную часть смесительного сопла 2 так, что характеристики воспламенения и стабилизации пламени понижаются. Когда внутренний диаметр смесительного сопла 2 представлен величиной (фиг. 1) и ширина каждой воздушной струи 26 для стабилизации пламени представлена величиной (фиг. 2), длина окружности выходного отверстия смеси тельного сопла 2 представлена величиной πd, и суммарная ширина воздушных струй по окружности представлена величиной 4b и, таким образом, предпочтительно, чтобы формировалась следующая формула:
πd/40 ≤ b ≤ πd/8.
Часть с давлением ниже атмосферного может формироваться в потоке текучей смеси 1 струями 26 воздуха, и возмущения создаются в части текучей смеси с давлением ниже атмосферного и, благодаря действию струй 26 воздуха как несущего горячего газа в невоспламеняемом районе C (фиг. 7) текучей смеси на дальнем конце смесительного сопла 2, воспламенение и стабилизация пламени усиливаются.
Часть с давлением ниже атмосферного формируется в потоке текучей смеси при помощи впрыскивания воздуха радиально внутрь из четырех воздушных сопел 24, примыкающих к наружной периферии дальней оконечной части смесительного сопла 2, в направлении центра смесительного сопла 2.
Зона воспламенения в невоспламеняемой зоне C (фиг. 7) увеличена без задерживания появления струй воздуха в центральной части текучей смеси, при этом скорость потока струй воздуха из сопел 24 делается не менее чем в три раза выше, чем скорость потока текучей смеси. Если суммарная ширина инжекционных отверстий воздушных сопел 24 лежит в пределах от 10% до 50% длины окружности дальнего конца смесительного сопла, текучая смесь, которая должна воспламеняться, не будет чрезмерно увлекаться к центральной части первичного сопла и, таким образом, могут быть достигнуты удовлетворительные характеристики воспламенения и стабилизации пламени в невоспламеняемой зоне C (фиг. 7) благодаря струям газа.
Когда направление впрыскивания воздуха из каждого воздушного сопла 24 перпендикулярно направлению потока текучей смеси 1, воздух, выходящий из инжекционного отверстия 25, фактически формирует струю 26 воздуха, показанную на фиг. 8 из-за потока текучей смеси 1, и зона воспламенения и стабилизации пламени формируется в районе границы (который расположен немного далее выходного отверстия смесительного сопла 2 по направлению движения смеси) между этой струей 26 газа и потоком текучей смеси 1.
Когда направление впрыскивания воздуха из каждого воздушного сопла 24 ориентировано в сторону ближней стороны смесительного сопла 2, как показано на фиг. 9, струя 26 воздуха, впрыскиваемая из воздушного сопла 24, увлекается назад к выходному отверстию смесительного сопла 2 потоком текучей смеси 1 так, что зона воспламенения и стабилизации пламени формируется на уровне выходного отверстия смесительного сопла 2.
Если инжекционное отверстие 25 каждого воздушного сопла 24 может поворачиваться вокруг оси воздушного сопла 24 и/или оси, перпендикулярной оси воздушного сопла 24, или подвижно в осевом направлении, воздух может впрыскиваться из оптимального положения в оптимальном направлении в зависимости от конфигурации топки, сорта топлива, загрузки котла и т.д. Количество и устройство воздушных сопел 24 не ограничивается описанным выше и может модифицироваться, как показано на фиг. 10-12.
В котле, показанном на фиг. 13, с использованием горелок этого варианта воплощения изобретения, часть воздуха, поступающая от первичного воздушного вентилятора 31, проходит через подогреватель 34 воздуха, а остаток обходит подогреватель 34 воздуха. Воздух, обходящий подогреватель 34 воздуха, подается в горелки по каналу 32 для первичного холодного воздуха, и воздух, проходящий через подогреватель 34 воздуха, подается к горелкам по каналу 35 для первичного горячего воздуха. Скорость потока воздуха, проходящего через подогреватель 34 воздуха, и воздуха, обходящего подогреватель 34 воздуха, регулируется средством для регулирования потока, выполненным в виде заслонок 33 и 36 регулирования потока, после чего подается в мельницу 38 через входной канал 37 для первичного воздуха так, что температура на выходе угольной мельницы 38 может достичь предопределенной величины.
Распыленный и высушенный уголь (тонко распыленный уголь) подается с транспортирующим воздухом в соответствующую горелку по трубе 39 подачи угля и далее подается в топку 4 через смесительное сопло 2. Другой необходимый воздух (воздух, участвующий в горении) подается вентилятором 41 подачи воздуха, участвующего в горении. После нагрева воздуха подогревателем 34 воздуха он подается в воздушную камеру 5 по каналу 42 для воздуха, участвующего в горении, и далее подается в топку 4 через горелки.
Воздух 21 для внутренней стабилизации пламени отводится из линии подачи первичного воздуха на выходной стороне подогревателя 34 воздуха и подается в каждый коллектор 23 для воздуха для внутренней стабилизации пламени через трубу 22 для подачи воздуха для внутренней стабилизации пламени. Система последующей подачи соответствует показанной на фиг. 1. Транспортирующий воздух подается под более высоким давлением, чем давление воздуха, подаваемого в зону горения и пригоден для использования в качестве воздуха для внутренней стабилизации пламени. Поскольку горячий воздух из подогревателя 34 воздуха используется в качестве воздуха для внутренней стабилизации пламени, достигается преимущество, заключающееся в том, что текучая смесь нагревается так, что эффективность сгорания повышается.
Благодаря подаче воздуха для внутренней стабилизации пламени в смесительное сопло 2 только в ходе работы горелки задача настоящего изобретения может быть достигнута. Таким образом, в устройствах сгорания, имеющих множество горелок, в случае подачи воздуха для внутренней стабилизации пламени в ходе работы горелок и прекращения подачи при прекращении работы горелок количество энергии, затрачиваемое на подачу сжатого воздуха, может быть сокращено. Это является преимуществом с точки зрения эффективности.
Когда нагрузка на горелку низка, скорость потока текучей смеси 1 понижена и, таким образом, скорость потока воздуха для внутренней стабилизации пламени может быть низкой. Благодаря регулировке объема воздуха для внутренней стабилизации пламени в соответствии с нагрузкой на горелку или загрузкой котла (эквивалентна нагрузке на горелку) может достигаться высокая эффективность работы, когда количество энергии, требуемое для подачи воздуха для внутренней стабилизации пламени, сохраняется на минимальном уровне.
Воздух для внутренней стабилизации пламени может подаваться вентилятором специального назначения. В этом случае, поскольку для воздуха для внутренней стабилизации пламени может быть установлено оптимальное давление подачи, может достигаться эффективность работы с точки зрения затрачиваемой энергии. В этом случае также, может подаваться как низкотемпературный воздух до подогревателя 34 воздуха (фиг. 13), так и горячий (высокотемпературный) воздух после подогревателя 34 воздуха. В этом случае, благодаря подаче горячего воздуха после подогревателя 34 воздуха при работе горелок, распыленный уголь и текучая смесь 1 могут нагреваться после впрыска газа для внутренней стабилизации пламени, посредством чего увеличивается эффективность сгорания, и благодаря подаче низкотемпературного воздуха до подогревателя 34 воздуха, когда горелки выключены, выходные части горелок могут охлаждаться, благодаря чему подавляется влияние тепла, излучаемого топкой 4.
Богатый кислородом воздух, имеющий концентрацию кислорода, составляющую не менее 21%, может использоваться в качестве воздуха для внутренней стабилизации пламени. В этом случае характеристики воспламенения и стабилизации пламени дополнительно улучшаются так, что дополнительно стимулируется высокоэффективное сгорание с пониженным выделением окислов азота NOx.
Настоящее изобретение может применяться для других конструкций горелок.
В горелке, показанной на фиг. 14, сопла 24 проходят через направляющую часть 11 для третичного воздуха для получения четырех струй 26 воздуха (фиг. 15) для стабилизации пламени.
В горелке, показанной на фиг. 16, применен единый проход 46 для подачи воздуха, участвующего в горении, расположенный вокруг наружной периферии смесительного сопла 2. В этой конструкции горелки, в частности, когда в воздухе, участвующем в горении, создаются завихрения, создаются рециркулирующие потоки 15 горячего газа между потоком текучей смеси 1 и потоком воздуха 44, участвующего в горении, и, таким образом, стимулируются эффекты, обеспечиваемые настоящим изобретением.
В горелке, показанной на фиг. 18, в сравнении с горелкой, показанной на фиг. 1, применен сепаратор 27, отделяющий вторичный воздух 6 от третичного воздуха 9. В этом примере смешивание текучей смеси 1 с наружным периферийным воздухом задерживается в соответствии с рассеиванием потока текучей смеси 1, таким образом поддерживается уменьшенное выделение окислов азота NOx вблизи горелки.
В горелке, показанной на фиг. 19, площадь сечения потока в дальней оконечной части смесительного сопла 2 прогрессивно уменьшается в направлении его выходного отверстия. Воздушные сопла 24 простираются вдоль смесительного сопла 2. Поток текучей смеси 1 направляется к центральной части (т.е. к оси) смесительного сопла 2, и вторичный воздух 6, и третичный воздух 9 завихряются наружу и, таким образом, рециркулирующие потоки 15 образуются между потоком текучей смеси 1 и потоками воздуха 6 и 9, участвующего в горении, таким образом, что стимулируются эффекты, обеспечиваемые настоящим изобретением.
Горелка, показанная на фиг. 21, содержит смесительное сопло 2, через которое проходит газовая смесь (поток тонко распыленного угля) 1, составленная из распыленного угля (топливо) и транспортирующего воздуха (первичный воздух), трубку Вентури 112, сформированную на внутренней периферийной поверхности смесительного сопла 2 для сужения потока 1 распыленного угля так, чтобы предотвратить обратное зажигание, приспособление 114 для регулирования концентрации распыленного угля, расположенное в дальнем конце нефтяной форсунки 110, простирающейся внутри смесительного сопла 2 в направлении топки 4, для регулирования распределения концентрации частиц распыленного угля в потоке 1 распыленного угля, стабилизатор 3 пламени на дальнем конце смесительного сопла 2 для воспламенения распыленного угля в потоке 1 распыленного угля и для стабилизации пламени, кольцеобразная разделяющая пластина 116 для отделения вторичного воздуха, который улучшает воспламенение и стабилизацию пламени и производит эффект отделения пламени горелки от вторичного воздуха 6, сопла 24 для впрыскивания газа 21 из трубы 22 для подачи газа в топку 4 для доставки горячего газа вблизи стабилизатора 3 пламени к центральной части горелки, вторичный рукав 118, формирующий проход вокруг наружной периферии смесительного сопла 2, по которому проходит вторичный воздух 6, поступающий в зону горения, направляющую часть 11, сформированную с расширением на дальнем конце вторичного рукава 118, третичный рукав 120, взаимодействующий с вторичным рукавом 118 с образованием между ними прохода для третичного воздуха 9, участвующего в горении, вторичную воздушную заслонку 122 для регулирования объема подаваемого вторичного воздуха и третичный воздушный резистор 10 для регулирования подаваемого третичного воздуха 9 и для регулирования завихряющей силы третичного воздуха 9, подаваемого к наружной периферии пламени горелки. Вторичный воздух и третичный воздух подаются из воздушной камеры 5, и эти составные элементы горелки открыты в горловину 124 горелки.
В этой горелке газовая смесь 1 (поток распыленного угля), составленная из тонко распыленного угля и первичного воздуха, подается в смесительное сопло 2. Поток распыленного угля сужается трубкой Вентури 112 и, таким образом, концентрация частиц распыленного угля в потоке 1 распыленного угля повышается вблизи кольца 3 для стабилизации пламени благодаря применению приспособления 114 для регулирования концентрации распыленного угля. Воспламенение распыленного угля и стабилизация пламени производятся вблизи стабилизатора 3. В этот момент создается часть потока 1 распыленного угля, имеющая давление ниже атмосферного, расположенная непосредственно после стабилизатора 3 пламени. Часть вторичного воздуха 6 и поток 1 распыленного угля в смесительном сопле 2 всасываются в эту часть с давлением ниже атмосферного, таким образом формируется зона воспламенения потока 1 распыленного угля. Горячий газ вырабатывается в зоне воспламенения, и этот горячий газ направляется в поток 1 распыленного угля в виде струй 26 газа (в данном случае, воздуха), впрыскиваемых, соответственно, из сопел 24 для впрыскивания газа в направлении центральной части смесительного сопла 2, таким образом уменьшается невоспламеняемая зона газа, участвующего в горении, обеспечивается получение зоны воспламенения, благодаря чему усиливается способность горелки стабилизировать пламя.
В качестве одного средства для улучшения характеристик воспламенения топлива и стабилизации пламени вблизи стабилизатора 3 пламени применено приспособление 114 для регулирования концентрации распыленного угля, расположенное в центральной части смесительного сопла 2. Приспособление 114 для регулирования концентрации распыленного угля установлено на наружной периферийной поверхности дальней оконечной части нефтяной форсунки 110, которая используется при приведении горелки в действие. Нефтяная форсунка 110 используется не только при приведении горелки в действие, но также и при работе с низкой нагрузкой. В горелке типа, не оснащенного нефтяной форсункой, может применяться кронштейн (не показан) в том месте, где должна монтироваться нефтяная форсунка, и приспособление 114 для регулирования концентрации распыленного угля может устанавливаться на этот кронштейн.
Как особо показано на фиг. 23, приспособление 114 для регулирования концентрации распыленного угля установлено на наружной периферийной поверхности нефтяной форсунки 110 и имеет такую же форму, которая может быть получена при вращении трапецеидальной пластины вокруг оси нефтяной форсунки 110. Ближняя наклонная или конусообразная часть приспособления 114 для регулирования концентрации распыленного угля имеет угол наклона равный 20o, и его дальняя наклонная или конусообразная часть имеет угол наклона равный 15o, и соотношение размеров r1 наружного диаметра его параллельной части (параллельной внутренней периферийной поверхности смесительного сопла 2 и оси горелки) и длины в направлении движения потока газа составляет 1(r1 = c/d = 1).
Если длина параллельной части приспособления 114 для регулирования концентрации распыленного угля слишком велика, необходимо увеличить размеры воздушной камеры 5, а это не выгодно с точки зрения стоимости. Размер наружного диаметра параллельной части ограничен диаметром смесительного сопла 2. Наружный диаметр обычно составляет около 0,7 от диаметра смесительного сопла 2. Для дозирования потока 1 угля, концентрированного наклонной поверхностью ближней стороны приспособления 114 для регулирования концентрации распыленного угля, соотношение r1 (= c/d) наружного диаметра параллельной части приспособления 114 для регулирования концентрации распыленного угля и его длины его предпочтительно, составляет 1 ≤ r1 ≤ 2.
Также необходимо, чтобы угол i наклона дальней наклонной или конусообразной части трубки Вентури 112, сформированной на внутренней периферийной поверхности смесительного сопла 2 относительно оси горелки, был меньше, чем угол наклона ближней наклонной части приспособления 114 для регулирования концентрации распыленного угля (i < а).
В этом варианте воплощения изобретения угол наклона составляет около 20o, и угол наклона i составляет около 10o.
Приспособление 114 для регулирования концентрации распыленного угля выполняет функцию увеличения концентрации распыленного угля в текучей смеси, протекающей вблизи внутренней периферийной поверхности смесительного сопла 2 при помощи ближней наклонной части. Угол наклона ближней наклонной поверхности приспособления 114 для регулирования концентрации распыленного угля, предпочтительно, составляет от 15o до 25o. Если угол наклона меньше 15o, эффект всасывания частиц распыленного угля в направлении внутренней периферийной поверхности смесительного сопла 2 уменьшается, и если угол наклона больше 25o, большее количество частиц распыленного угля сталкивается с внутренней периферийной поверхностью смесительного сопла 2 и, таким образом, внутренняя периферийная поверхность может быстрее изнашиваться.
Для формирования пламени высокой температуры у выходного отверстия горелки важно увеличить концентрацию распыленного угля вблизи стабилизатора 3 пламени, а также постепенно уменьшать скорость потока 1 распыленного угля так, чтобы поток 12 распыленного угля не отделялся от наружной поверхности дальней оконечной части (дальняя по ходу подачи смеси часть) приспособления 114 для регулирования концентрации распыленного угля. Для того, чтобы обеспечить выполнение этих функций, угол наклона дальней наклонной поверхности приспособления 114 для регулирования концентрации распыленного угля, предпочтительно, установлен в пределах от 6o до 18o так, чтобы постепенно понижать скорость потока 1 распыленного угля. Даже если угол наклона меньше 6o, эквивалентный эффект концентрации может быть получен, но глубина приспособления 114 для регулирования концентрации распыленного угля так же, как и глубина воздушной камеры 5, чрезмерно увеличится, что увеличивает размер печи. Если угол наклона больше 18o, отделение весьма возможно.
Угол наклона и угол наклона могут быть установлены независимо друг от друга.
Что касается функций параллельной части приспособления 114 для регулирования концентрации распыленного угля, после того, как поток 1 распыленного угля отклоняется ближней его наклоненной частью, поток 1 распыленного угля, концентрация распыленного угля в котором увеличена вблизи внутренней периферийной поверхности смесительного сопла 2, направляется стабильным потоком в течение некоторого времени в направлении, параллельном внутренней периферийной поверхности смесительного сопла 2. Благодаря этой параллельной части поток 1 распыленного угля может стабильно выпрямляться приспособлением 114 для регулирования концентрации распыленного угля, даже если концентрация распыленного угля и сорт угля изменяются и нагрузка при горении внезапно меняется.
Как видно из показанной на фиг. 23 плотности угля, концентрация распыленного угля относительно высока вблизи стабилизатора 3 пламени и относительно низка в центральной части горелки.
Путем пригодного определения углов наклона наклонных поверхностей приспособления 114 для регулирования концентрации распыленного угля и размеров его параллельной части, а также путем пригодного определения угла наклона дальней наклонной части трубки Вентури 112, концентрация распыленного угля в текучей смеси может быть увеличена вблизи стабилизатора 3 пламени, и текучая смесь может подаваться к выходному отверстию горелки с низкой скоростью так, что может безусловно достигаться воспламенение топлива и стабилизация пламени нужным образом у выходного отверстия горелки.
В этом варианте воплощения изобретения применен кольцевой диск 116 для отделения вторичного воздуха для направления потока вторичного воздуха 6 к наружной периферии дальнего конца смесительного сопла 2 (см. фиг. 22 и 24). Кольцеобразная разделяющая пластина 116 выполняет функцию отделения вторичного воздуха 6 от пламени горелки, а также выполняет функцию смешивания вторичного воздуха 6 с горячим газом непосредственно после стабилизатора 3 пламени, таким образом повышая способность воспламенения и стабилизации пламени стабилизатора 3 пламени. Как показано на фиг. 21 и 22, радиально внутренняя часть потока вторичного воздуха 6 прерывается кольцеобразной разделяющей пластиной 116, и инжекционные отверстия 25 сопел 24 для впрыскивания газа открыты дальше пластины 116. При таком устройстве струи 26 из сопел 24 для впрыскивания газа не подвергаются непосредственному воздействию вторичного воздуха 6 и, таким образом, стимулируется несущее действие струй 26 в отношении распыленного угля.
На фиг. 25 изображен другой вариант воплощения изобретения, в котором вместо разделяющей пластины 116 используется множество разделяющих пластин 116. В этом варианте применены пластины 116 для разделения вторичного воздуха для разделения по кольцу потока вторичного воздуха 6 на четыре секции на наружной периферии дальнего конца выходного отверстия смесительного сопла (см. фиг. 26 и 27). Благодаря разделению потока вторичного воздуха 6 при помощи разделительных пластин 116 поток вторичного воздуха 6 смешивается с горячим газом, подающимся непосредственно после стабилизатора 3 пламени, в зоне, находящейся после пластины 116 для разделения вторичного воздуха, благодаря чему способность воспламенения топлива и стабилизации пламени стабилизатором 3 пламени повышается. Как показано на фиг. 26, в этих зонах, где вторичный воздух 6 свободно протекает между разделительными пластинами 116, кинетическая энергия вторичного воздуха 6 относительно велика и, таким образом, эти зоны создают эффект содействия разделению потока вторичного воздуха 6 и пламени горелки. Если поток вторичного воздуха 6 смешивается с текучей смесью 1 слишком рано в этой зоне топки 4, расположенной сразу за выходным отверстием горелки, сгорания с низким выделением окислов азота NOx (сгорание с восстановлением) достичь невозможно и, таким образом, полезно отделить пламя горелки от потока вторичного воздуха 6.
Как показано на фиг. 28, может использоваться устройство, в котором пластины 116 для отделения вторичного воздуха наклонены на предопределенный угол относительно оси смесительного сопла 2 и перекрывают друг друга по окружности. При таком устройстве щелевидный промежуток формируется между каждыми двумя примыкающими пластинами 116. Вторичный воздух 6 впрыскивается из этих промежутков во внутреннее пространство топки. В этом случае, несмотря на то, что кинематическая энергия вторичного газа 6, впрыскиваемого из промежутков, мала по сравнению с кинетической энергией вторичного газа 6, подаваемого в топку через промежутки между пластинами 116, показанными на фиг. 27, поскольку вторичный воздух подается в топку в виде тонкой воздушной пленки, может осуществляться охлаждение пластин 116 для отделения вторичного воздуха и предотвращается отложение на них золы.
Как показано на фиг. 29, в этом варианте воплощения изобретения каждое из сопел 24 для впрыскивания газа имеет два круглых отверстия или окна 25, сформированных в периферийной стенке дальней оконечной части сопла, имеющего закрытый дальний конец, при этом два отверстия 25 расположены рядом друг с другом в продольном направлении. Объем впрыскиваемого из отверстий 25 газа составляет 2% от объема первичного воздуха.
На фиг. 30-32 изображены модифицированные отверстия 25. Отверстия 25 могут формироваться в дальнем конце загнутого сопла (фиг. 30). Отверстие 25 овальной конфигурации, имеющее больший диаметр, расположенный параллельно или перпендикулярно оси сопла, может формироваться в периферийной стенке дальней оконечной части сопла, имеющего закрытый дальний конец (фиг. 31-32). За счет формирования направляющей 28 в периферийной кромке отверстия 25, как сказано на фиг. 33, сила впрыскивания газа из отверстия 25 может быть увеличена.
Сопла 24 для впрыскивания газа могут передвигаться в направлении A (фиг. 34) по оси горелки так, что расстояние между отверстием 25 каждого инжекционного сопла 24 и выходным отверстием горелки в направлении оси горелки (т. е. расстояние от отверстия 25 до стабилизатора 3 пламени) может изменяться в соответствии с сортом топлива, условиями нагрузки на горелку, количеством горелок, применяемых в печи и т.д. Каждое из сопел 24 для впрыска газа может вращаться в направлении B (фиг. 34) вокруг своей оси так, чтобы изменялось направление впрыскивания газа. Например, когда применяется обогащенная угольная смесь или грубо измельченный уголь, которые неблагоприятны с точки зрения характеристик воспламенения и стабилизации пламени, преимущественно направлять струи из сопел 24 для впрыскивания газа в ближнюю сторону смесительного сопла 2.
Результаты стабилизации пламени при помощи струй газа будут описаны со ссылками на фиг. 35 и 36.
Циркулирующие потоки A горячего газа существуют в районе, расположенном после стабилизатора 3 пламени, примененного на выходной части смесительного сопла 2, и способствуют воспламенению топлива и стабилизации пламени вблизи стабилизатора 3 пламени. В обычной конструкции, показанной на фиг. 35, в которой не применены какие-либо сопла 24 для впрыскивания газа, внутри воспламеняемого района B формируется большой невоспламеняемый район C. С другой стороны, в варианте воплощения изобретения, показанном на фиг. 36, струи воздуха 26, впрыскиваемые соответственно, из сопел 24 для впрыскивания газа в направлении центральной части смесительного сопла 2, достигают действия несущего горячего газа и, таким образом, часть циркулирующих потоков A течет вдоль струй 26 воздуха в текучую смесь (поток распыленного угля) 1 так, что характеристики воспламенения и стабилизации пламени в ней улучшаются.
Таким образом, в этом варианте воплощения изобретения невоспламеняемая зона C становится меньше в сравнении с обычной конструкцией, и температура пламени в зоне восстановления относительно повышается и, таким образом, степень восстановления окислов азота NOx увеличивается. Кроме того, возмущения в текучей смеси 1 увеличиваются струями 26 воздуха, и это способствует увеличению интенсивности горения после воспламенения.
Для увеличения степени восстановления окислов азота NOx важно существенно восстановить окислы азота NOx до молекулярного азота N2 в восстанавливающем пламени высокой температуры и затем нагнетать воздух, участвующий в сгорании, в объеме, соответствующем нехватке воздуха, таким образом завершая сгорание. Таким образом, требуется отделять третичный воздух 9 от пламени.
В этой связи угол наклона направляющей части 11 и соотношение размеров (см. фиг. 23) становятся важными величинами, где представляет собой ширину отклонения направляющей части 11 по перпендикуляру к оси горелки и представляет расстояние между краем горловины 124 горелки (который расположен перед началом ее наклонной поверхности и параллелен оси горелки) и частью вторичного рукава 118, параллельной оси горелки. Угол наклона направляющей части 11 является углом наклона ее расширяющейся относительно оси горелки дальней оконечной части.
Если угол наклона направляющей части 11 слишком велик, поток 1 распыленного угля в смесительном сопле 2 не может удовлетворительно смешиваться с потоком вторичного воздуха 6 и, таким образом, угол наклона составляет, предпочтительно, от 35o до 55o. Угол наклона наклонной части горловины 124 горелки, расположенной у выходной части горелки, предпочтительно, составляет приблизительно от 35o до 55o относительно оси горелки.
Если оба угла наклона слишком велики, третичный воздух отделяется слишком далеко от пламени горелки, получаемого в результате горения распыленного угля, и не может производиться удовлетворительное смешивание, в результате чего не может быть получено стабильное пламя. Если оба угла наклона слишком малы, эффект отделения пламени горелки от потока третичного воздуха 9 не может быть удовлетворительным, и поток третичного воздуха 9 подается в пламя горелки в избыточном объеме, из-за чего не может быть получено сгорание распыленного угля с низким выделением окислов азота NOx.
Предпочтительно, соотношение размеров составляет 0,5 ≤ r2 ≤ 1. Если меньше 0,5, эффект отделения пламени горелки от потока третичного воздуха 9 не может быть удовлетворительным, и если больше 1, поток третичного воздуха сталкивается с направляющей частью 11 и не может эффективно протекать в топку 4.
Таким образом, в этом варианте воплощения изобретения угол наклона направляющей части 11 составляет 45o, и угол наклона наклонной части горловины 124 горелки, расположенной у выходной части горелки, относительно оси горелки составляет 45o, а соотношение размеров составляет 0,8.
Отверстия 25 для впрыскивания газа могут иметь любые пригодные конфигурации при соотношении r3 (= а/b) (фиг. 37) длины отверстия 25 в направлении оси инжекционного сопла 24 и длины отверстия 25 по направлению диаметра инжекционного сопла 24 не меньшем 1. Например, отверстие 25 может быть прямоугольным, как показано на фиг. 38. Благодаря применению инжекционных отверстий 25, которые имеют r3 ≥ 1, достигается преимущество, заключающееся в том, что струи 26 могут достигать центральной части горелки, не подвергаясь серьезному влиянию потока текучей смеси.
В случае, когда два или более инжекционных отверстий 25 сформированы в инжекционном сопле 24 (фиг. 39), предпочтительно, чтобы расстояние X между осями инжекционных отверстий 25 не превышало более чем в 2,5 раза диаметр R отверстия 25. Если два отверстия для впрыскивания газа разнесены слишком далеко друг от друга, формируются две отдельные струи. С другой стороны, если X/R ≤ 2,5, две струи, расположенные в тесной близости друг от друга, комбинируются в одну струю сразу после впрыскивания двух струй, соответственно, из отверстий 25 и, таким образом, нет необходимости в увеличении скорости потока впрыскиваемого газа и, кроме того, струя впрыскивается из очевидно большого инжекционного окна, и может производиться струя, имеющая большую проникающую силу.
Когда используется не менее двух инжекционных отверстий и истинный диаметр инжекционного окна увеличивается без изменения скорости потока газа, впрыскиваемого из каждого инжекционного отверстия, проникающая сила струи газа может быть увеличена. Когда количество инжекционных отверстий увеличено с одновременным сохранением постоянной суммы площадей инжекционных отверстий, для увеличения истинного диаметра количество инжекционных отверстий не ограничено. В таком случае предпочтительно множество инжекционных отверстий располагать вдоль длины сопла для впрыскивания газа (т.е. в направлении оси сопла) так, что струи газа не будут испытывать серьезного сопротивления со стороны потока текучей смеси.
Когда скорость потока газа, впрыскиваемого из отверстия для впрыскивания газа, не менее чем в три раза выше скорости потока текучей смеси, струи газа, впрыскиваемые из отверстий для впрыскивания газа, входят в поток текучей смеси в направлении его центральной части с достаточной силой проникновения, таким образом эффективно уменьшая невоспламеняемую зону пламени.
В другом варианте выполнения горелки согласно изобретению, показанном на фиг. 40, вторичный рукав 118 и третичный рукав 120 закруглены или изогнуты в их угловых частях в конфигурации их поперечного сечения. С такой конструкцией вторичный воздух 6 и третичный воздух 9 могут подаваться в топку без потери давления из рукава 118 и рукава 120, и необходимая скорость потоков воздуха, участвующего в сгорании, может быть достигнута с минимальной потерей давления.
В этой горелке нет необходимости применять заслонку 122 (фиг. 25) во вторичном рукаве 118, и соотношение подаваемого вторичного воздуха 6 и третичного воздуха 9 регулируется резистором 10 третичного воздуха.
В горелке, показанной на фиг. 40, воздух, участвующий в сгорании, подается с высокой скоростью в зону, расположенную вокруг потока распыленного угля, и частицы распыленного угля накапливаются вблизи внутренней периферийной поверхности входного сопла 2 и, таким образом, функции воспламенения горелки и стабилизации пламени достигаются более эффективно.
Горелка, показанная на фиг. 41, содержит смесительное сопло 2 и стержневой элемент, простирающийся внутри смесительного сопла 2. Здесь стержневым элементом является трубка 202. Текучая смесь 1, содержащая распыленный уголь и транспортирующий воздух, протекает по проходу, ограниченному смесительным соплом 2 и трубкой 202. Нефтяная форсунка 110 простирается внутри трубки 202 в направлении топки 4. Наружный стабилизатор 204 пламени расположен на дальнем конце смесительного сопла 2, и внутренний стабилизатор 206 пламени расположен на дальнем конце трубки 202. Регулирующее приспособление, выполненное, например, в виде концентратора 208, применено на наружной периферийной поверхности трубки 202 и разделяет текучую смесь 1 на часть текучей смеси с высокой концентрацией распыленного угля, протекающую в радиально наружном районе, и часть текучей смеси с низкой концентрацией распыленного угля, протекающую в радиально внутреннем районе.
Четыре перемычки 30 разнесены друг от друга по окружности под равными углами и простираются в радиальном направлении, соединяя наружный стабилизатор 204 пламени с внутренним стабилизатором 206 пламени (фиг. 42). Как показано на фиг. 43, каждая перемычка 300 имеет V-образное сечение, суживающееся в направлении передней стороны. Таким образом, перемычки 300 частично прерывают поток текучей смеси 1, но не будут изнашиваться текучей смесью. Каждая перемычка 300 может иметь U-образное сечение или полукруглое сечение, прогрессивно уменьшающееся по ширине в направлении передней стороны, и количество перемычек 300 не ограничивается четырьмя.
Как средства для частичного прерывания потока текучей смеси струи 26 воздуха могут впрыскиваться, соответственно, из отверстий 25 сопел 24 для впрыскивания газа в направлении центральной части смесительного сопла 2, как в предыдущих вариантах воплощения изобретения.
Как показано на фиг. 41, перемычки и струи воздуха могут использоваться в комбинации таким образом, что струи воздуха выровнены с перемычками соответственно.
Как показано на фиг. 44, дальше наружного стабилизатора 204 пламени и внутреннего стабилизатора 206 пламени формируются районы A, в которых вследствие турбулентных завихрений существуют циркулирующие потоки. Распыленный уголь с относительно малым размером частиц всасывается в районы A и воспламеняется, образуя горючий газ с высокой температурой. Этот высокотемпературный горючий газ течет от наружного стабилизатора 204 пламени к внутреннему стабилизатору 206 пламени вдоль перемычек 300 и способствует воспламенению текучей смеси на поверхности внутреннего стабилизатора 206 пламени.
Как показано на фиг. 45, за счет ориентации перемычек 300 так же, как и струй 26 воздуха по касательной к внутреннему стабилизатору 206 пламени, стимулируется воспламенение по всей площади внутреннего стабилизатора 206 пламени.
название | год | авторы | номер документа |
---|---|---|---|
ГОРЕЛКА ДЛЯ СЖИГАНИЯ И КОТЕЛ | 2016 |
|
RU2664749C1 |
ГОРЕЛКА ДЛЯ СЖИГАНИЯ И КОТЕЛ, ОСНАЩЕННЫЙ ТАКОЙ ГОРЕЛКОЙ ДЛЯ СЖИГАНИЯ | 2016 |
|
RU2661993C1 |
ГОРЕЛКА С ЦЕНТРАЛЬНОЙ ВОЗДУШНОЙ СТРУЕЙ И СПОСОБ УМЕНЬШЕНИЯ ВЫБРОСОВ NO УКАЗАННОЙ ГОРЕЛКИ (ВАРИАНТЫ) | 2006 |
|
RU2433342C2 |
Малоэмиссионная вихревая горелка | 2018 |
|
RU2693117C1 |
ИНЖЕКЦИОННАЯ СМЕСИТЕЛЬНАЯ ГОРЕЛКА | 2009 |
|
RU2419744C2 |
ГОРЕЛКА ФАКЕЛЬНАЯ ИНЖЕКЦИОННАЯ | 2002 |
|
RU2215938C1 |
ГОРЕЛКА | 2013 |
|
RU2624421C2 |
ГОРЕЛКА ПЕЧНАЯ ДВУХТОПЛИВНАЯ | 2004 |
|
RU2267706C1 |
ГАЗОВАЯ ИНЖЕКЦИОННАЯ ГОРЕЛКА | 2009 |
|
RU2395035C1 |
ГОРЕЛКА, ПРИСПОСОБЛЕННАЯ ДЛЯ СНИЖЕНИЯ ВЫДЕЛЕНИЯ ЯДОВИТЫХ ГАЗОВ (ВАРИАНТЫ) И СПОСОБ ОПТИМИЗАЦИИ СГОРАНИЯ | 1994 |
|
RU2089785C1 |
Горелка включает смесительное сопло, ограничивающее проход для текучей смеси, по которому текучая смесь, содержащая распыленный уголь и транспортирующий газ, течет в направлении топки, проходы для вторичного и третичного воздуха, окружающие смесительное сопло, по которым течет вторичный воздух и третичный воздух, соответственно, для участия в горении; и сопла для впрыскивания воздуха, расположенные вблизи наружной периферии дальнего конца смесительного сопла. Воздух впрыскивается из сопел для впрыскивания воздуха в направлении оси смесительного сопла так, что высокотемпературный газ вблизи наружной периферии дальнего конца смесительного сопла всасывается в текучую смесь вблизи наружной периферии этого дальнего конца. Изобретение позволяет снизить содержание окислов азота в продуктах сгорания. 6 с. и 41 з.п.ф-лы, 45 ил.
Приоритет по пунктам:
19.07.96 - по пп.1 - 4, 12, 13, 16, 18, 19, 30, 31 - 38;
07.02.97 - по пп.5 - 11, 14, 17, 20 - 29, 39 - 45;
10.02.97 - по пп.15, 46, 47.
РЕЛЕ ДАВЛЕНИЯСС?СОЮЗНАЯ^^'-^*-'^v лл;;м1?р^с--;Ь,'!ИОТРКА —^~ —11Л | 0 |
|
SU314928A1 |
Игра "тир" | 1974 |
|
SU489928A1 |
US 4726760 A, 23.02.1988 | |||
Пылеугольная горелка | 1988 |
|
SU1548597A1 |
Горелка | 1990 |
|
SU1726902A1 |
Пылеугольная горелка | 1983 |
|
SU1134844A1 |
US 5231937 A, 03.08.1993 | |||
Способ выделения порошкообразного поливинилацетата | 1977 |
|
SU672863A1 |
Авторы
Даты
2000-07-20—Публикация
1997-04-30—Подача