РОТОРНО-ВОЛНОВОЙ ДВИГАТЕЛЬ Российский патент 2000 года по МПК F02B55/00 F02B53/08 

Описание патента на изобретение RU2155272C1

Изобретение относится к двигателестроению и может быть использовано в качестве силовой установки на воздушных, водных или сухопутных транспортных средствах.

Известен газотурбинный двигатель, работающий по разомкнутой схеме с внутренним горением, состоящий из турбины, камеры сгорания и компрессора, расположенных на одном валу. Воздух для горения засасывается компрессором, где сжимается и направляется в камеру сгорания, в которой при постоянном давлении (p=const) сжигается топливо. Расчетный КПД описанной установки при температуре газа перед турбиной 725oC равен 21% (см. Матвеев Г.А. Теплотехника.- М.: Высшая школа, 1981, с.358). Известный двигатель отличается высокой компактностью, малой массой, возможностью сжигания в камере сгорания любых жидких и газообразных топлив. Однако поднятие температуры газа и соответственно КПД турбины лимитируется теплостойкостью и прочностью лопаток турбины при соответствующих окружных скоростях ротора. Кроме этого, в диапазоне мощностей от 1000 кВт и менее газотурбинные двигатели значительно уступают по экономичности поршневым двигателям внутреннего сгорания, это связывается обычно с большими потерями рабочего тела через неплотности газовых стыков лопаточных машин, что особенно заметно при небольших частотах вращения и малом диаметре ротора турбины.

Наиболее близким по технической сути к предлагаемому изобретению является роторный двигатель объемного типа, работающий по газотурбинному циклу с подводом теплоты при постоянном объеме (v= const), содержащий корпус с впускным и выпускным патрубками, эксцентрично установленный в нем ротор с лопатками, делящими компрессорный и расширительный отсеки на несколько изолированных объемов, вынесенную камеру сгорания с форсункой, при этом камера сгорания связана с проточной частью отсеков соединительными каналами (RU, патент 2123123 C1, кл. F 02 В 53/08, 1998).

К числу недостатков данного двигателя можно отнести большую долю потерянного объема рабочих камер (наличие "вредного" пространства), невозможность получения высокой степени сжатия. Кроме этого, соединительные каналы оказывают значительное сопротивление движению рабочего тела, что весьма существенно снижает экономичность теплового цикла. Выбранная конструкция объемной машины для сжатия и расширения рабочего тела обладает большими механическими потерями. С увеличением числа оборотов такие потери будут возрастать. Подвижные лопатки ротора в расширительной части двигателя работают в условиях значительной теплонапряженности. Смазка пар трения при высоких окружающих температурах приводит к быстрому закоксовыванию сопрягаемых подвижных элементов ротора. Именно этим и объясняется отсутствие работоспособных конструкций двигателей, работающих по газотурбинному циклу с подводом теплоты в цикле, как при постоянном объеме, так и при постоянном давлении.

Задачей настоящего изобретения является устранение указанных недостатков, а также обеспечение положительных свойств газотурбинных двигателей и поршневых машин в одном силовом агрегате.

Технический результат достигается тем, что двигатель, содержащий ротор, установленный внутри корпуса, включающего впускное и выпускное окна, камеру сгорания, компрессорный и расширительный отсеки, согласно изобретению имеет корпус, внутренняя поверхность которого выполнена в виде лежащих на одной оси пары винтовых конусов, обращенных навстречу вершинами, подобного ротора, установленного под углом к его оси, и не менее двух опорных узлов, при этом любая точка на винтовой линии ротора, кроме центральной (точка перегиба ротора), в которой частота и амплитуда колебаний равна нулю, выполнена с возможностью совершать равные угловые колебания относительно осевой линии корпуса, а в целом обеспечения ротору возможности вращения с одновременным планетарным обкатыванием по внутренним огибающим корпуса.

Количественное соотношение заходов винтовых конусов корпуса (n1) и ротора (n2) должны относиться как целые порядковые числа: 1:2,2:3, 3:4 и т.д. и могут быть определены следующим равенством:
n2 = n1-1 при ≥1.

Рост числа заходов винтовых конусов приводит к усложнению формы корпуса и ротора. В качестве примера выбрана пропорция 1:2, соответствующая самому простому однозаходному ротору в паре с двухзаходным корпусом. Абсолютная же величина пропорции определяет выбор соответствующей конструкции опорных узлов, которые могут быть встроены в ротор либо вынесены за его пределы.

Каждый опорный узел (для пропорции 1:2) содержит две крейцкопфные пары и фрагмент коленчатого вала с опорными и выходной шейками, при этом выходная шейка связана с валом отбора мощности посредством поводкового механизма, снабженного противовесом, а смежные опорные шейки установлены с возможностью их качательного движения в пересекающихся направлениях. В качестве альтернативы крейцкопфным парам могут быть использованы шатунные механизмы, обеспечивающие опорным шейкам качательное движение.

Корпус и соответственно ротор в компрессорном и расширительном отсеках выполнены с противоположной винтовой навивкой, при этом частота и амплитуда витков от центра к периферии возрастает. Это обеспечивает, при однонаправленном вращении, по одну сторону камеры сгорания, движение сжимаемого воздуха от периферии к центру и по другую сторону - расширяющихся газов от центра к периферии.

Винтовая конструкция основных узлов двигателя по мере приближения их к камере сгорания позволяет снижать величину допускаемых отклонений и соответственно геометрические зазоры, что по мере увеличения степени сжатия, при возможности работы двигателя, приведет к более точному сопряжению корпус - ротор, а в зоне максимального давления (камере сгорания, где амплитуда меняет свой знак на противоположный) геометрический люфт в сочленении корпус-ротор будет равен абсолютному нулю; в свою очередь, при бесконтактном способе уплотнения в двигателе это приведет к минимальным утечкам рабочего тела в смежные полости других камер как в компрессорном, так и расширительном отсеках. Этому способствует и сокращение длины уплотнительного контура самих витков ротора в камерах с более высоким давлением.

Установка ротора в не менее чем двух опорных узлах, учитывая достаточно сложный характер его движения, является необходимым условием, обеспечивающим практическую работоспособность заявленного типа двигателя.

Реализация связи выходных шеек коленчатого вала с валом отбора мощности посредством, например, поводкового механизма является одним из возможных путей передачи крутящего момента валу отбора мощности с перемещающегося по нескольким координатам коленчатого вала в наиболее удобном для потребителя виде.

Введение в схему двигателя фрагментов коленчатого вала в качестве узла, формирующего равномерный крутящий момент и отбор мощности, требует включения упомянутой кинематической связи в перечень отличительных признаков, обеспечивающих работоспособность устройства.

В известных в науке и технике решениях /в объеме проведенного поиска/ указанные отличительные признаки не были обнаружены, что позволяет утверждать соответствие изобретения критериям новизны и изобретательского уровня.

На фиг. 1 изображен продольный разрез двигателя; на фиг.2 -сечение I-I фиг. 1; на фиг.3 - сечение II-II фиг. 1: на фиг.4 - сечение III-III фиг. 1; на фиг.5 - аксонометрическая проекция кинематической схемы двигателя.

Роторно-волновой двигатель, содержащий ротор (2), установленный в корпусе (1), включающем впускное (19) и выпускное (20) окна, компрессорный (21) и расширительный (23) отсеки и камеру сгорания (22). Внутренняя поверхность корпуса (1) выполнена в виде лежащих на одной оси пары винтовых конусов, обращенных навстречу вершинами. Подобный ротор (2) установлен внутри корпуса (1)и под углом к его оси. При поперечном разрезе каждого последующего участка ротора по направлению витка (в рассматриваемых компрессорном и расширительном отсеках корпуса) в сечении образуются окружности разного диаметра с профилями, подобными друг другу. По обе стороны ротора установлены фрагменты коленчатого вала-шейки 3,4,5,6,7,8. Все они входят в состав опорных узлов 24, 25. Соответственно каждый опорный узел 24, 25 состоит из двух смежных опорных шеек 3,4 и 6,7, выходной шейки 5,8 и двух пар крейцкопфов 9,10 и 11,12. Выходные шейки 5,8 связаны с валами отбора мощности посредством поводковых механизмов 13, 14, снабженных противовесами 15,16. В проточной части корпуса, до расширительного отсека, также установлены форсунки 17 и запальные свечи 18. Камера сгорания при этом имеет форму тора, ось вращения которого совпадает с осевой линией корпуса.

Устойчивость ротора в любой точке на его орбите обеспечивается, как минимум, двумя опорными узлами 24, 25, расположенными по обе стороны от ротора. Каждый опорный узел это опора, обеспечивающая всем точкам ротора синхронное орбитальное вращение по заданным траекториям и их динамическое уравновешивание. Смежные опорные шейки 3,4, 6,7, входящие в состав опорного узла 24,25, установлены с возможностью их качательного движения в пересекающихся направлениях. Оси качания всех шеек пересекаются в одной точке - центре ротора. Выходные шейки 5,8 также входят в состав опорных узлов ротора, т.к. они принимают участие в его уравновешивании.

Качательное движение опорных шеек как фрагментов коленчатого вала описывается уравнением эллипса, лежащим на поверхности шара. Точка, лежащая на равном расстоянии между смежными опорными шейками и соединенная с центром ротора лучом - ось ротора, описывает окружность (как частный случай эллипса). Эта ось и используется для отбора мощности и установки противовесов.

Работа двигателя осуществляется следующим образом. Воздух в компрессорный отсек поступает непрерывно через впускное окно в два параллельных канала 26 и 27, смещенных относительно друг друга на 180o. Ротор 2, не касаясь стенок, вращается и одновременно планетарно обкатывается по внутренним огибающим корпуса, засасывая воздух в открытые объемы наружных витков винтовых каналов. За каждый оборот в оба канала компрессорного отсека засасываются и отсекаются от впускных окон по два объема воздуха. При дальнейшем повороте винтовой канал, в составе одного витка, начнет перемещаться к центру двигателя - камере сгорания, непрерывно уменьшаясь в объеме, за счет уменьшения частоты и амплитуды самого витка. Процесс сжатия продолжается до тех пор, пока все уменьшающийся объем со сжатым воздухом не подойдет к камере сгорания. В этот момент процесс внутреннего сжатия воздуха в компрессорном отсеке заканчивается. При последующем вращении ротора происходит процесс выталкивания сжатого воздуха в камеру сгорания тыльной стороной одного из витков ротора. На этом этапе через форсунки в воздух впрыскивается топливо и образованная топливно-воздушная смесь поджигается запальной свечей, установленной по ходу движения - в камере сгорания. В активном распространении пламени топливо-воздушной смеси участвуют газы, оставшиеся в камере от предыдущих циклов.

Сгоревшие газы с более высокой температурой и давлением покидают камеру сгорания и заполняют на роторе винтовые каналы расширительных отсеков, расположенных по другую сторону от центра ротора - места, в котором частота и амплитуда колебаний самого ротора равна нулю. Увеличение объемов расширительных отсеков происходит за счет выдавливающего воздействия газов на витки ротора. На момент максимального расширения кромки наружных витков ротора открываются, и газы, сначала свободно, а затем принудительно, выдавливаются в выпускное окно. Интервал выпуска отработанных газов из очередной камеры расширения в выпускное окно составляет 180o.

Следует отметить, что суммарный объем камеры сгорания во время работы остается неизменным, т.к. любое уменьшение объема компрессорной части компенсируется синхронным увеличением объема расширительной части ротора. При равенстве диаметров и количества витков в компрессорном и расширительном отсеках полезный крутящий момент в двигателе определяется разностью затрат на сжатие и расширение рабочего тела (учитывая также и механические потери) и незначительно зависит от угла поворота ротора в неподвижном корпусе. "Мертвые точки", характерные для машин периодического действия, полностью исключаются для кинематики волнового двигателя с любым отношением числа заходов корпуса к ротору (2:1, 3:2, 4:3 и т.д.). С увеличением числа заходов равномерность крутящего момента увеличивается.

Таким образом полный цикл, осуществляемый двигателем, состоит из отдельных этапов: непрерывного всасывания, порционного сжатия, окисления топлива воздухом в камере сгорания и далее - порционного расширения сгоревших газов с последующим их выпуском в выпускное окно. Все это происходит одновременно и непрерывно во всех движущихся камерах. В двигателе реализуется цикл с подводом теплоты при постоянном объеме (v=const), наиболее экономичный в сравнении с другими термодинамическими циклами.

Рассмотренный тип двигателя, в основе которого лежит внутреннее винтовое зацепление ротора с корпусом, допускает возможность получения высокой степени сжатия (ε) до ста и более единиц в одном агрегате и в отличие от прототипа рабочие полости его не содержат "вредного пространства". По ходу движения рабочего тела, особенно в области высоких температур, гарантировано отсутствие масла в проточной части двигателя, приводящее к закоксовыванию его рабочих элементов.

Конструирование же рабочего процесса, как в дизельном, так и в карбюраторном исполнении, подходит для использования не только жидкого или газообразного топлива, но и распыленных твердых сортов топлива.

В конструктивном плане в двигателе полностью отсутствуют детали, совершающие знакопеременное движение, ротор вращается с постоянной угловой скоростью, без соприкосновения с корпусом, при этом он полностью уравновешен, что допускает форсирование двигателя по числам оборотов. Всестороннее сжатие, которое может испытывать ротор во время работы, без резких колебаний температуры, очень благоприятно для использования в нем композиций из керамических материалов. Выступающие части ротора и корпуса имеют плавные очертания и вписываются в любую систему охлаждения. А т.к. схема легко допускает полное расширение рабочего тела, отсутствует потребность в глушителе шума.

Похожие патенты RU2155272C1

название год авторы номер документа
ЧЕТЫРЕХТАКТНЫЙ РОТОРНО-ЛОПАСТНОЙ ДВИГАТЕЛЬ 1996
  • Седунов Игорь Петрович
RU2101520C1
Винтовая турбина 2018
  • Мазуров Виктор Кузьмич
RU2716633C2
РОТОРНО-ВОЛНОВОЙ ДВИГАТЕЛЬ 2005
  • Иванов Вячеслав Геннадьевич
RU2304225C2
РОТОРНЫЙ КОНУСНО-ВИНТОВОЙ ДВИГАТЕЛЬ 2007
  • Айметдинов Булат Илдарович
RU2377414C2
РОТОРНО-ВОЛНОВОЙ ДВИГАТЕЛЬ 2010
  • Иванов Вячеслав Геннадьевич
  • Мерзанюкова Елена Вячеславовна
RU2482299C2
СФЕРИЧЕСКИЙ РОТОРНО-ВОЛНОВОЙ ДВИГАТЕЛЬ С УПРАВЛЯЕМЫМИ ПАРАМЕТРАМИ 2012
  • Иванов Вячеслав Геннадьевич
  • Мерзанюкова Елена Вячеславовна
RU2529614C2
МАШИНА И ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ НА ЕЕ ОСНОВЕ 2013
  • Лапин Владимир Геннадьевич
RU2565347C2
РОТОРНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 1995
  • Драчко Евгений Федорович[Ua]
RU2083850C1
ГИДРОПНЕВМАТИЧЕСКАЯ ТУРБОМАШИНА (ВАРИАНТЫ) 2002
  • Костюков Владимир Николаевич
RU2282725C2
ДВУХТАКТНЫЙ ПОРШНЕВОЙ ДВИГАТЕЛЬ 2013
  • Боев Игорь Васильевич
RU2520276C1

Иллюстрации к изобретению RU 2 155 272 C1

Реферат патента 2000 года РОТОРНО-ВОЛНОВОЙ ДВИГАТЕЛЬ

Изобретение относится к двигателестроению и может быть использовано в качестве силовой установки на воздушных, водных или сухопутных транспортных средствах. В корпусе двигателя, включающем впускное и выпускное окна, компрессорный и расширительный отсеки и камеру сгорания установлен под углом к оси корпуса ротор. Внутренняя поверхность корпуса и ротор имеют подобную конструкцию, а именно выполнены в виде обращенных навстречу двух винтовых конусов, расположенных по одной оси. Двигатель содержит два опорных узла, каждый из которых содержит по две крейцкопфные пары и фрагмент коленчатого вала с опорными и выходной шейками, при этом выходная шейка связана с валом отбора мощности посредством поводкового механизма, снабженного противовесом. Задача изобретения - увеличение КПД. 5 з.п.ф-лы, 5 ил.

Формула изобретения RU 2 155 272 C1

1. Роторно-волновой двигатель, содержащий ротор, установленный в корпусе, включающем впускное и выпускное окно, компрессорный и расширительный отсеки и камеру сгорания, отличающийся тем, что внутренняя поверхность корпуса выполнена в виде обращенных навстречу вершинами и лежащих на одной оси пары винтовых конусов подобно поверхности ротора, установленного под углом к оси корпуса, и не менее двух опорных узлов, при этом любая точка на винтовой линии ротора, кроме центральной, в которой частота и амплитуда колебаний равна нулю, выполнена с возможностью совершать равные угловые колебания относительно осевой линии корпуса, а в целом - обеспечения ротору возможности вращения с одновременным планетарным обкатыванием по внутренним огибающим корпуса. 2. Двигатель по п.1, отличающийся тем, что количественное соотношение заходов винтовых конусов корпуса n1 и ротора n2 определяется следующим равенством:
n2 = n1 - 1 при n2 ≥ 1
3. Двигатель по п.1, отличающийся тем, что корпус и ротор в компрессорном и расширительном отсеках выполнены с противоположной навивкой, при этом частота и амплитуда витков от центра к периферии возрастает.
4. Двигатель по п.1, отличающийся тем, что каждый опорный узел содержит по две крейцкопфные пары и фрагмент коленчатого вала с опорными и выходной шейками, при этом выходная шейка связана с валом отбора мощности посредством поводкового механизма, снабженного противовесом, а смежные опорные шейки установлены с возможностью их качательного движения в пересекающихся направлениях. 5. Двигатель по п.1, отличающийся тем, что камера сгорания имеет форму тора. 6. Двигатель по п.1, отличающийся тем, что топливные форсунки установлены в проточной части корпуса до расширительного отсека.

Документы, цитированные в отчете о поиске Патент 2000 года RU2155272C1

КОЛОВРАТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 1997
  • Савин Георгий Алексеевич
  • Савин Алексей Георгиевич
RU2123123C1
Способ преобразования энергии в газотурбинной установке замкнутого цикла и устройство для его осуществления 1990
  • Галицкий Николай Федорович
SU1776843A1
РОТОРНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ 1993
  • Михайлов Петр Андреевич
  • Яковлев Валерий Павлович
RU2068107C1
DE 3332707 A1, 28.03.1985
US 4848295 A, 18.07.1989.

RU 2 155 272 C1

Авторы

Седунов И.П.

Даты

2000-08-27Публикация

1999-07-13Подача