Изобретение относится к области электротехники и может использоваться для контроля работы и настройки щеточно-контактных аппаратов крупных электрических машин. Изобретение позволяет настраивать щеточно-контактный аппарат крупной электрической машины на основе объективных данных о величине тока конкретной щетки.
Известно устройство для измерения тока в поводке щетки [1, 2]. Датчик прибора выполнен в виде крючка, позволяющего захватывать канатики щетки. В датчике указанного прибора применен "принцип трансформатора постоянного тока". Основным преимуществом прибора является обеспечение доступности к любому токоведущему поводку. В то же время прибор обладает рядом существенных недостатков:
- отсутствие замкнутого магнитопровода неизбежно приводит к влиянию внешних относительно измеряемого проводника полей,
- трудность или невозможность одновременного зацепления всех токоведущих поводков щетки (чаще всего их 2),
- для проведения контроля токораспределения щеточно-контактного аппарата с одновременным документированием необходимы два человека.
Известно устройство для бесконтактного измерения тока, так называемый, "интеллектуальный датчик тока", основанное на измерении магнитной индукции в замкнутом магнитопроводе с помощью датчика Холла [3], которое является наиболее близким.
Основным недостатком данной конструкции при использовании для контроля тока щеток, является невозможность доступа к щеткам щеточно-контактного аппарата из-за размера и конструкции магнитопровода. Кроме того, процедура настройки щеточно-контактного аппарата предполагает необходимость получения всей картины токораспределения и запоминание последнего измеренного значения явно не достаточно.
Количество щеток на щеточно-контактном аппарате мощной электрической машины может быть несколько десятков, поэтому к памяти интеллектуальных клещей должны предъявляться особые требования. Память должна быть энергонезависимой, то есть записанные в нее значения должны сохраняться при отключении питания, кроме того, объем памяти должен обеспечить запись значений тока всех щеток щеточно-контактного аппарата крупной электрической машины.
Предлагаемое изобретение обеспечивает контроль токораспределения щеточно-контактного аппарата любой крупной электрической машины.
Это достигается тем, что в устройстве для контроля тока щеток щеточно-контактного аппарата электрической машины, состоящей из токоизмерительной головки в виде составного магнитопровода с датчиком Холла, размыкающего механизма, микроконтроллера на основе процессора, цифробуквенного индикатора, магнитопровод выполнен в виде кольца с внешним диаметром не более 30 мм, с внутренним диаметром не менее 15 мм, распиленного по радиусам - 60o, 90o, 150o, сектор между радиусами -90o и 150o является замыкателем, в зазоре -60o расположен датчик Холла, магнитопровод расположен на расстоянии не менее 200 мм от кнопки привода размыкающего механизма, в устройство введена микросхема энергонезависимой памяти, а цифробуквенный индикатор выполнен двухстрочным.
Расположение магнитопровода на расстоянии не менее 200 мм от руки оператора обеспечивает возможность контроля труднодоступных щеток. Обработка измеряемого сигнала осуществляется с помощью PIC-процессора. Объем энергонезависимой памяти 8К обеспечивает запись токораспределения щеточно-контактных аппаратов 15 крупных электрических машин с максимальным числом щеток на каждом полюсе - 256.
На фиг. 1 показана схема общей механической компоновки отдельных частей предлагаемого устройства. На фиг. 1 приняты следующие обозначения:
1 - проводник с током,
2 - неподвижная часть измерительного магнитопровода,
3 - замыкатель, подвижная часть измерительного магнитопровода,
4 - магниточувствительный датчик Холла,
5 - кнопка привода механизма размыкателя,
6 - двухстрочный цифробуквенный жидкокристаллический индикатор,
7 - клавиатура.
На фиг. 2 показана электрическая блок-схема устройства. На фиг. 3 приняты следующие обозначения:
1 - проводник с током,
2, 3 - измерительный составной магнитопровод,
4 - датчик Холла,
6 - двухстрочный цифробуквенный жидкокристаллический индикатор с подсветкой,
7 - клавиатура,
8 - стабилизатор тока датчика Холла,
9 - предварительный инструментальный усилитель постоянного тока,
10 - PIC-процессор с аналого-цифровым преобразователем,
11 - последовательный порт ввода - вывода,
12 - энергонезависимая память.
На фиг. 2 показана электрическая блок-схема устройства. На фиг. 2 приняты следующие обозначения:
1 - проводник с током,
2, 3 - измерительный составной магнитопровод,
4 - датчик Холла,
6 - двухстрочный цифробуквенный жидкокристаллический индикатор с подсветкой,
7 - клавиатура,
8 - стабилизатор тока датчика Холла,
9 - предварительный инструментальный усилитель постоянного тока,
10 - RISC-процессор с аналого-цифровым преобразователем,
11 - последовательный порт ввода-вывода,
12 - энергонезависимая память,
13 - источник опорного напряжения,
14 - преобразователи напряжения,
15 - источник питания.
Устройство работает следующим образом. Вокруг проводника с током (1), величину которого требуется определить, создается кольцевое магнитное поле. Магнитное поле концентрируется в магнитопроводе, изготовленном из ферромагнитного материала, имеющего большое значение магнитной проницаемости. Для того чтобы избежать при измерении тока размыкания электрической цепи, магнитопровод изготавливают разъемным (2, 3). В узком зазоре (-60o) неподвижной части магнитопровода (2) устанавливается магниточувствительный элемент - как правило, датчик Холла (4). Подвижная часть магнитопровода, замыкатель, укреплен на поворотном кронштейне. Тяговая пружина обеспечивает прижим замыкателя к неподвижной части магнитопровода и замыкание магнитной цепи при проведении измерения. Размыкание производится при повороте кронштейна на некоторый угол. Это происходит при нажатии кнопки размыкающего механизма, усилие от которой передается через фигурное коромысло и тросик. Для работы датчика Холла необходим специальный источник питания - стабилизатор тока (8). Сигнал датчика усиливается предварительным усилителем (9) и может выводиться на индикатор. После процедуры балансировки датчика и градуировки усилительного тракта выходной сигнал в определенном диапазоне линейно коррелирует с величиной тока в контролируемом проводнике. Современные требования цифрового представления любой выходной информации определяют наличие в любом измерительном устройстве наличие аналого-цифрового преобразователя (АЦП) и цифрового индикатора. Электронная часть описываемого устройства представляет собой микроконтроллер, выполненный на базе процессора PIC16c74A (10), относящегося к классу RISC-процессоров, имеющего низкое энергопотребление, встроенный АЦП. Для работы АЦП необходим источник опорного напряжения (13). В электрическую схему устройства включен блок преобразователей напряжения питания (14). Это блок осуществляет нормальную работу процессора и усилительного тракта в условиях постоянно изменяющегося напряжения источника питания (15). Известные интеллектуальные токоизмерительные клещи запоминают последнее измеренное значение. При этом используется ячейка памяти самого процессора, записанная в нее информация пропадает при отключении питания. В описываемом устройстве применена внешняя энергонезависимая память большой емкости (12), информация в которой сохраняется неопределенно долго при отключении питания, при этом ее объем позволяет записать значения токов всех щеток на нескольких мощных электрических машинах, находящихся в эксплуатации (15 машин по 256 щеток на каждой). Во всех приборах, обеспечивающих измерение и запоминание только одной величины, в качестве индикатора достаточно использовать однострочный многоразрядный цифробуквенный индикатор. Для обеспечения контроля нескольких щеточно-контактных аппаратов различной конфигурации обязателен одновременный вывод на индикатор дополнительной служебной информации (режим работы, номер машины, полюс, номер щетки), поэтому в качестве индикатора в данном приборе использован многоразрядный двухстрочный (12Х2) жидкокристаллический индикатор (6). Последовательный порт ввода-вывода (11) позволяет осуществлять обмен информацией с компьютером, на котором отображаются гистограммы токораспределения и результатов статистической обработки. Описанные отличительные характеристики прибора позволяют объективно оценить качество настройки щеточно-контактного аппарата и выявлять закономерности в его эксплуатационных характеристиках.
Источники информации
1. Родионов Ю. А. и др. Оценка качества работы щеточного аппарата электрических машин приборами диагностического комплекса "Диакар". - "Электротехника", 1995, N 3, с. 16-19.
2. Хуторецкий Г.М. и др. Диагностический комплекс "Диакар" для контроля за работой щеточного аппарата турбогенераторов. - "Электрические станции", 1993, N 12, с. 29-32.
3. Портной Г. и др. Современные датчики измерения тока и датчики напряжения. - "Электронные компоненты", 1997, N 3-4 (6), с. 30-32.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ТОКА ЩЕТОК ЩЕТОЧНО-КОНТАКТНОГО АППАРАТА СИНХРОННЫХ ГЕНЕРАТОРОВ | 2007 |
|
RU2383029C2 |
СПОСОБ КОНТРОЛЯ ТОКОРАСПРЕДЕЛЕНИЯ ПО КОМПЛЕКТАМ ЩЕТОК УЗЛА ТОКОСЪЕМА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2178609C2 |
ЩЁТОЧНО-КОНТАКТНЫЙ УЗЕЛ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ | 2015 |
|
RU2600107C2 |
В П В. Г. Колчанов, Д. Б. Карпман, Е. X. Глидер и О. Б. Градоз | 1970 |
|
SU284140A1 |
МОДУЛЬНАЯ УНИВЕРСАЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА БЕЛАШОВА | 2009 |
|
RU2394339C1 |
Электрический двигатель постоянного тока | 1980 |
|
SU985894A1 |
Линейный электрический двигательпОСТОяННОгО TOKA | 1979 |
|
SU853752A1 |
Узел скользящего токосъема | 2020 |
|
RU2752651C1 |
Устройство для моделирования коммутации электрических машин | 1978 |
|
SU748602A1 |
КОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 1968 |
|
SU231422A1 |
Изобретение относится к области электротехники и может быть использовано для контроля работы и настройки щеточно-контактных аппаратов крупных электрических машин. Техническим результатом является обеспечение возможности автоматизированного получения картины токораспределения между щетками щеточно-контактного аппарата любой крупной электрической машины. Устройство содержит токоизмерительную головку в виде составного магнитопровода с датчиком Холла, размыкающий механизм, микроконтроллер на основе процессора, двухстрочный цифробуквенный индикатор, причем магнитопровод выполнен из кольца с внешним диаметром не более 30 мм, с внутренним диаметром не менее 15 мм, распиленного по радиусам -60, -90, 150o, сектор между радиусами -90 и 150o является замыкателем, в зазоре -60o расположен датчик Холла, магнитопровод расположен на расстоянии не менее 200 мм от кнопки привода размыкающего механизма, в устройство введена микросхема энергонезависимой памяти, а цифробуквенный индикатор выполнен двухстрочным. 2 ил.
Устройство для контроля тока щеток щеточно-контактного аппарата электрической машины, состоящее из токоизмерительной головки в виде составного магнитопровода с датчиком Холла, размыкающего механизма, микроконтроллера на основе процессора, цифробуквенного индикатора, отличающееся тем, что магнитопровод выполнен в виде кольца с внешним диаметром не более 30 мм, с внутренним диаметром не менее 15 мм, распиленного по радиусам -60, -90, 150o, сектор между радиусами -90 и 150o является замыкателем, в зазоре -60o расположен датчик Холла, магнитопровод расположен на расстоянии не менее 200 мм от кнопки привода размыкающего механизма, в устройство введена микросхема энергонезависимой памяти, а цифробуквенный индикатор выполнен двухстрочным.
Портной Г | |||
и др | |||
Современные датчики измерения тока и датчики напряжения | |||
- Электронные компоненты, 1997, N 3-4 (6), с | |||
Способ обработки медных солей нафтеновых кислот | 1923 |
|
SU30A1 |
ПРИБОР ДЛЯ ИЗМЕРЕНИЯ ТОКА РАЗРЫВА ПРИ КОНТРОЛЕ ИНТЕНСИВНОСТИ ИСКРЕНИЯ ЩЕТОК ЭЛЕКТРИЧЕСКИХ МАШИН | 1992 |
|
RU2037835C1 |
RU 2071076 С1, 27.12.1996 | |||
US 5262717 А, 16.11.1993 | |||
DE 3226169 А1, 10.03.1986 | |||
Дополнительные вальцы к лесопильной раме для распиловки бревен неправильной формы | 1938 |
|
SU90147A1 |
Авторы
Даты
2000-09-27—Публикация
1999-04-06—Подача