ОПТИЧЕСКОЕ СКАНИРУЮЩЕЕ УСТРОЙСТВО Российский патент 2000 года по МПК G02B26/10 G02B27/18 

Описание патента на изобретение RU2158948C1

Изобретение относится к оптико-электронному приборостроению, а точнее к приборам, служащим для пространственного перемещения светового луча, при котором последовательно "просматривается" заданная зона, и предназначенным для использования в тепловизионных и телевизионных системах.

Известно оптическое сканирующее устройство [1], которое содержит последовательно расположенные объектив, сферическое зеркало, механизм строчной развертки изображения, выполненный в виде зеркального многогранника, и два внесенных параболических зеркала, одно из которых кинематически связано с кулачковым механизмом привода кадровой развертки изображения, а в его фокусе расположен приемник излучения. В течение одного оборота кулачкового механизма изображение объекта дважды перемещается через чувствительный элемент приемника излучения в прямом и обратном направлениях с частотой кадровой развертки изображения. Строчная развертка изображения обеспечивается за счет вращения зеркального многогранника.

Недостатком известного устройства является наличие большого числа подвижных оптических и механических элементов, что отрицательно сказывается на качестве развертки из-за несоосности осей в процессе развертки и биений в подшипниках.

Известны оптические сканирующие системы [2 - 5], содержащие объектив, приемник излучения и зеркальный многогранник развертывающей системы, который состоит из усеченных пирамид, соединенных меньшими основаниями. Усеченные пирамиды имеют одинаковое число боковых граней, при этом их смежные грани образуют двугранный угол.

Наиболее близким по технической сущности к предлагаемому изобретению является строчно-кадровая сканирующая система, используемая в стабилизированном тепловизионном устройстве наведения [4], содержащая объектив и строчно-кадровое сканирующее устройство, выполненное в виде зеркального барабана, состоящего из двух оптически сопряженных усеченных конических зеркальных многогранников, соединенных меньшими основаниями, перпендикулярными к оси вращения многогранников, при этом грани одного из многогранников, сопряженного с объективом, установлены под одинаковым углом к оси вращения, а грани другого установлены с наклоном к оси вращения так, что углы наклона граней одной половины его окружного направления смещены относительно граней другой половины его окружного направления на угловую величину, пропорциональную углу мгновенного поля зрения сканирующего устройства по ширине строки кадра, а в каждой половине окружного направления зеркального многогранника угол наклона каждой последующей грани смещен относительно предыдущего на угловую величину, пропорциональную углу мгновенного поля зрения сканирующего устройства по ширине сканирующей полосы, соответствующей длине линейки многоэлементного приемника излучения.

К недостаткам прототипа следует отнести его существенные габариты, что является важным фактором для подобных систем, тем более если они применяются на летательных аппаратах.

Целью данного изобретения является уменьшение габаритов системы при прочих равных условиях.

Указанная цель достигается тем, что в предлагаемом устройстве, содержащем объектив и две зеркальные усеченные пирамиды, соединенные меньшими основаниями, расположенными перпендикулярно к оси их вращения, в которых грани одной пирамиды сопряжены с объективом, а другой - с многоэлементным приемником излучения и попарно наклонены к оси их вращения, а в отличие от известного, угол наклона каждой последующей грани в окружном направлении зеркальной усеченной пирамиды от первой по N/2 + 1 выполнен отличным от предыдущего на постоянную угловую величину, а каждой последующей грани от N/2 + 1 по N на такую же величину, но с противоположным знаком, где N - четное число граней.

Таким образом, поставленная задача решена соответствующим выполнением углов наклона барабана, благодаря чему, за один оборот формируются кадры в прямом и обратном направлениях и при этом информация с первой грани призмы является информацией для построения первой зоны первого кадра и для последней зоны второго кадра, а с грани N/2 + 1 является информацией для последней зоны первого кадра и первой зоны второго кадра. Это позволяет при сохранении количества зон в кадре уменьшить зеркальный барабан на две грани, что привело к уменьшению габаритов заявляемого устройства.

Изобретение поясняется чертежами, где на фиг. 1 показана общая схема оптического сканирующего устройства, на фиг. 2 - разрез по А-А, на фиг. 3 - изображение кадра развертки в прямом и обратном направлениях по шесть зон.

Оптическое сканирующее устройство содержит объектив 1, зеркальный барабан 2, выполненный в виде двух зеркальных усеченных пирамид 3 и 4 с гранями 5 (5), например, 10 граней. Изображение с объектива 1 направляется его оптическими элементами 6, 7 на грани усеченной пирамиды 4 зеркального барабана 2 и, отразившись от его граней, попадает на соответствующие грани усеченной пирамиды 3 и далее через фокусирующий элемент 8 на многоэлементный приемник излучения 9 (например, на линейку ПЗС).

Устройство работает следующим образом. Энергия ИК-излучения наблюдаемой картины пространства предметов в виде широких параллельных пучков лучей попадает в объектив 1, формирующий поле зрения устройства в пространстве предметов в плоскости выходного зрачка объектива 1. Пучок параллельных лучей, выходящих из объектива 1, попадает на грань 5 зеркальной пирамиды 4, а затем на соответствующую ей грань 5' пирамиды 3 и, отразившись, попадает через фокусирующий элемент 8 на многоэлементный приемник излучения 9. Вращение барабана 2 вокруг оси Х-Х за счет граней пирамиды 4 обеспечивает перемещение изображения относительно приемника 9, а наклон граней пирамиды - многополевое (зонное) сканирование. Таким образом, при наличии граней (например, 10) поочередно в кадре будут фиксироваться все зоны, соответствующие углу наклона граней. Если за первую пару граней принять грани с наименьшим наклоном (51-5'1), то ей соответствует зона "а" (фиг. 3). При переходе изображения на следующую грань (52-5'2), угол наклона которой изменен на угловую постоянную величину, например, со знаком "+", то сканируется зона "б", такая закономерность продолжается до попадания изображения на грань N/2 + 1 (в нашем примере зона "е"), в результате, указанное количество граней позволяет построить полностью первый кадр. После грани N/2 + 1, т.е. с (57-5'7) угол наклона граней меняется на противоположный знак "-", и строится зона сканирования "д" второго кадра, первая зона которого формируется из запоминающего устройства по информации с граней (56-5'6), соответствующая зоне сканирования "е" первого кадра, а вторая зона с граней (57-5'7), далее закономерность продолжается до последней грани (510-5'10), которой соответствует зона "б". Последняя зона второго кадра формируется из запоминающего устройства по информации граней (51-5'1), поэтому ей соответствует зона "а" первого кадра.

Последующая обработка полученной информации осуществляется в электронном тракте, включающем запоминающее устройство и реализуемом по общедоступным схемам [9, 10], и не является принципиальной для заявляемого изобретения.

В результате, предлагаемое устройство, пирамида которого выполнена с указанным наклоном граней, позволяет за 1,0 оборот сканера построить два полных кадра и уменьшить ее габариты, что приводит к уменьшению габаритов всего устройства, а это является одним из основных факторов для таких систем, используемых в летательных аппаратах.

В качестве подтверждения вышесказанному приводится сравнительный расчет габаритов прототипа (12 граней) и предлагаемого устройства (10 граней).

Расчет габаритов выполнен по формуле, полученной на основе источников [6, 7, 8].


где d - диаметр выходного светового пучка при условии отсутствия виньетирования, равный, например, 13,3 мм,
Dср - средний диаметр описанной окружности среднего сечения усеченных пирамид, являющийся основным габаритным размером устройства, при условии отсутствия виньетирования,
ϕ - угол поворота грани призмы от нулевого положения, выраженный через оптический угол поля обзора сканирования (развертки) призмы по строке (зоне) кадра, равный, например, 42,6o,
θ - угловой размер грани, который определяется как θ = 360o/N, где N - число граней.

Таким образом, при равных заданных значениях и условиях отсутствия виньетирования имеем при N = 12 граней Dср = 175,36 мм (прототип); при N = 10 граней Dср = 103,95 мм (предлагаемое устройство).

Следовательно, предлагаемое устройство в 1,7 раза меньше прототипа, при обеспечении всех равных условий сканирования.

Источники информации
1. Патент РФ N 2040026, МПК кл. G 02 B 26/10, публ. 20.07.95 г.

2. Патент Великобритании N 1569879, МПК кл. G 02 B 27/17, публ. 1980 г.

3. Патент РФ N 1642430, МПК кл. G 02 B 26/10, публ. 15.04.91 г.

4. Патент РФ N 2099750, МПК кл. G 01 S 17/10, публ. 20.12.97 (прототип).

5. А.с. СССР N 1742774, МПК кл. G 02 B 26/10, публ. 23.06.92 г.

6. Якушенков Ю.Г. "Теория и расчет оптико-электронных приборов", Москва, "Логос", 1999 г., стр. 222-229.

7. Ллойд Дж. "Системы тепловидения", Москва, "Мир", 1978 г., стр. 258, 261, 265, 271 - 277.

8. Мирошников М.М. "Теоретические основы оптико-электронных приборов", Ленинград, "Машиностроение", 1977 г., стр. 77-90, 53.

9. Письменный Г. В. , Михайлов Б.Б., Корнев А.Ю. "Системы технического зрения в робототехнике", Москва, "Машиностроение", 1991 г., стр. 23-37.

10. Писаревский А.Н., Чернявский А.Ф. и др. "Системы технического зрения", Ленинград, "Машиностроение", 1988 г., стр. 119-132.

Похожие патенты RU2158948C1

название год авторы номер документа
ЗЕРКАЛЬНЫЙ МНОГОГРАННИК РАЗВЕРТЫВАЮЩЕЙ СИСТЕМЫ 1999
  • Казамаров А.А.
  • Луканцев В.Н.
  • Халеев В.К.
  • Медведев В.В.
RU2151415C1
СТАБИЛИЗИРОВАННОЕ ТЕПЛОВИЗИОННОЕ УСТРОЙСТВО НАВЕДЕНИЯ 1995
  • Казамаров Александр Александрович
  • Луканцев Виктор Никифорович
  • Манухин Вячеслав Тихонович
  • Плотицын Олег Николаевич
  • Родин Геннадий Львович
RU2099750C1
Оптическая сканирующая система 1990
  • Блюдников Лев Михайлович
  • Митин Владимир Павлович
  • Товбин Борис Серафимович
  • Широбоков Александр Михайлович
SU1739347A1
Оптическая система зонного сканирования 1990
  • Митин Владимир Павлович
  • Блюдников Лев Михайлович
  • Коробченко Игорь Александрович
  • Жуковский Дмитрий Юрьевич
SU1806403A3
ОПТИЧЕСКАЯ СИСТЕМА ЗОННОГО СКАНИРОВАНИЯ 1998
  • Казамаров А.А.
  • Луканцев В.Н.
  • Халеев В.К.
RU2147762C1
СКАНИРУЮЩЕЕ УСТРОЙСТВО 1992
  • Кожевников Ю.Г.
  • Михайлов А.С.
  • Мухамедяров Р.Д.
  • Галиев Р.Н.
RU2008711C1
ОПТИКО-ЭЛЕКТРОННАЯ СИСТЕМА ПОИСКА И СОПРОВОЖДЕНИЯ ЦЕЛИ 2000
  • Казамаров А.А.
  • Михайлов Ю.Н.
  • Турок Р.С.
  • Петров Ю.Л.
  • Луканцев В.Н.
  • Трейнер И.Л.
RU2155323C1
Оптическая система зонного сканирования 1991
  • Митин Владимир Павлович
  • Блюдников Лев Михайлович
  • Коробченко Игорь Александрович
  • Кокорев Сергей Иванович
  • Жуковский Дмитрий Юрьевич
SU1806404A3
ОПТИЧЕСКАЯ СИСТЕМА ЗОННОГО СКАНИРОВАНИЯ 1991
  • Митин В.П.
  • Блюдников Л.М.
  • Чиванов А.Н.
  • Коробченко И.А.
RU2018168C1
УСТРОЙСТВО СКАНИРОВАНИЯ 1998
  • Семин В.А.
  • Сюняев Л.З.
  • Шашков А.А.
RU2146828C1

Иллюстрации к изобретению RU 2 158 948 C1

Реферат патента 2000 года ОПТИЧЕСКОЕ СКАНИРУЮЩЕЕ УСТРОЙСТВО

Изобретение относится к оптико-электронному приборостроению, а именно к приборам, служащим для пространственного перемещения светового луча, при котором последовательно "просматривается" заданная зона, и предназначенным для использования в тепловизионных системах. Устройство содержит объектив и две зеркальные усеченные пирамиды, соединенные меньшими основаниями, в которых грани одной пирамиды оптически сопряжены с объективом, а другой - с многоэлементным фотоприемником. При этом угол наклона к оси вращения в окружном направлении каждой грани по отношению к предыдущей отличен на постоянную угловую величину, причем для граней от первой до N/2+1, где N - число граней, изменение угла наклона граней выполнено в одном направлении, а для остальных граней - в другом. Технический результат - уменьшение габаритов системы достигается за счет того, что заявленное устройство позволяет за один оборот построить два полных кадра. 3 ил.

Формула изобретения RU 2 158 948 C1

Оптическое сканирующее устройство, содержащее объектив и две зеркальные усеченные пирамиды, соединенные меньшими основаниями, расположенными перпендикулярно оси их вращения, в которых грани одной пирамиды оптически сопряжены с объективом, а другой оптически сопряжены с многоэлементным приемником излучения и попарно наклонены к оси вращения, отличающееся тем, что угол наклона к оси вращения в окружном направлении каждой грани по отношению к предыдущей грани отличен на постоянную угловую величину, причем для граней от первой до N/2 + 1, где N - число граней, изменение угла наклона граней выполнено в одном направлении, а для остальных граней - в другом направлении.

Документы, цитированные в отчете о поиске Патент 2000 года RU2158948C1

СТАБИЛИЗИРОВАННОЕ ТЕПЛОВИЗИОННОЕ УСТРОЙСТВО НАВЕДЕНИЯ 1995
  • Казамаров Александр Александрович
  • Луканцев Виктор Никифорович
  • Манухин Вячеслав Тихонович
  • Плотицын Олег Николаевич
  • Родин Геннадий Львович
RU2099750C1
FR 8117336, 02.05.1986
ОПТИЧЕСКАЯ СИСТЕМА ЗОННОГО СКАНИРОВАНИЯ 1998
  • Казамаров А.А.
  • Луканцев В.Н.
  • Халеев В.К.
RU2147762C1
УСТРОЙСТВО для СМЕШЕНИЯ ГОРЯЧИХ и холодных 0
  • С. И. Айнюнский, Б. С. Казарновский, Л. Я. Липшиц А. А. Черненко Всесоюзный Научно Исследовательский Проектный Институт Галургии
SU394072A1
SU 1804273, 10.10.1996
УСТРОЙСТВО СКАНИРОВАНИЯ 1998
  • Семин В.А.
  • Сюняев Л.З.
  • Шашков А.А.
RU2146828C1
Устройство для восстановления тактовых импульсов 1988
  • Ковалева Нинель Михайловна
  • Трикоз Сергей Юрьевич
SU1569879A1
US 5198919, 30.03.1993
US 4889418, 26.12.1989
Устройство для автоматической разбраковки элементов 1959
  • Солодовников Л.Н.
SU137552A1
Устройство для постановки спинакера на яхте с носовым релингом 1979
  • Богачев Леонид Алексеевич
  • Ночевалов Юрий Валентинович
SU783125A1
Способ получения 6-метокса-8-аминохинолина 1934
  • Струков И.Т.
SU40973A1
US 5179271, 12.07.1993
ОПТИЧЕСКОЕ СКАНИРУЮЩЕЕ УСТРОЙСТВО 1993
  • Михайлов Н.М.
  • Рухлядев Ю.В.
RU2040026C1
Оптическая сканирующая система 1990
  • Митин Владимир Павлович
  • Блюдников Лев Михайлович
  • Коробченко Игорь Александрович
  • Лаврентьева Лариса Игоревна
  • Маргозина Людмила Анатольевна
SU1742774A1
Сканирующее устройство 1987
  • Степин Юрий Александрович
SU1642430A1

RU 2 158 948 C1

Авторы

Казамаров А.А.

Луканцев В.Н.

Халеев В.К.

Даты

2000-11-10Публикация

2000-04-24Подача