ЭЛЕКТРОННЫЙ ЗАМОК Российский патент 2000 года по МПК E05B49/00 E05B47/00 G08B13/00 

Описание патента на изобретение RU2159836C1

Изобретение относится к технике защиты различных объектов от доступа посторонних лиц, в частности к электронным замкам. Известны электронные замки (авт. св. СССР N 358495, 475450, 506693, 592693, 699155, 878889, 1000547, 1201472, 1252468, 1326718, 1776744; патенты РФ N 2002020, 2037046, 2043476; патенты США N 4831860, 5209088; патенты Великобритании N 2141774, 2261254; патенты ФРГ N 3407128, 3907326; патенты Франции N 2559193, 2692309; патенты Японии N 59-192167, 60-29912 и другие).

Из известных электронных замков наиболее близким к предлагаемому является "электронный замок" (авт. св. СССР N 1326718, E 05 B 47/00, 1986), который и выбран в качестве прототипа.

При нахождении вблизи замка средства для кодирования, выполненного, например, в виде ключа или брелока, генератор излучает радиосигнал, частота которого преобразуется в средстве для кодирования, после чего опять излучается и принимается усилителем (приемником), настроенным на эту частоту. При совпадении частоты настройки с принимаемой частотой замок открывается.

Однако указанный электронный замок отличается сравнительно низкими помехозащищенностью, надежностью и секретностью. Это объясняется тем, что в эфире возможно появление сигналов, частота которых равна промежуточной частоте средства для кодирования. Эти сигналы принимаются приемником и обеспечивают ложные (несанкционированные) открывания замка.

Задачей изобретения является повышение помехозащищенности, надежности и секретности. Это достигается использованием сложных сигналов с фазовой манипуляцией (ФМн), которые обладают структурной и энергетической скрытностью.

Энергетическая скрытность данных сигналов обусловлена их высокой сжимаемостью во времени или по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный сигнал в точке приема может оказаться замаскированным шумами. Причем энергия сложного сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов.

Структурная скрытность сложных сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменения значений параметров, что затрудняет оптимальную или хотя бы квазиоптимальную обработку сложных сигналов априорно неизвестной структуры.

Указанные сигналы позволяют применять новый вид селекции - структурную селекцию. Это значит, что появляется новая возможность разделять сигналы, действующие в одной и той же полосе частот и в одни и те же промежутки времени.

Поставленная задача решается тем, что электронный замок, содержащий расположенные на объекте охраны радиопередатчик, радиоприемник, выход которого соединен с исполнительным блоком, и элементы включения, выполненные в виде механического замка с выключателем питания, соединенного с радиопередатчиком и радиоприемником, а также средство для кодирования, расположенное вне объекта охраны и выполненное в виде двух колебательных контуров, соединенных между собой через средство преобразования частоты, при этом исполнительный блок кинематически связан с механическим замком, снабжен генератором модулирующего кода, фазовым манипулятором, двумя перемножителями, узкополосным фильтром, фильтром нижних частот, блоком памяти, коррелятором и пороговым блоком, причем между выходом средства преобразования частоты и вторым колебательным контуром включен фазовый манипулятор, второй вход которого соединен с выходом генератора модулирующего кода, между выходом радиоприемника и входом исполнительного блока последовательно включены первый перемножитель, второй вход которого соединен с выходом фильтра нижних частот, узкополосный фильтр, второй перемножитель, второй вход которого соединен с выходом радиоприемника, фильтр нижних частот, коррелятор, второй вход которого соединен с выходом блока памяти, и пороговый блок.

Структурная схема предлагаемого электронного замка представлена на фиг. 1. Временные диаграммы, поясняющие принцип работы электронного замка, изображены на фиг. 2.

Электронный замок содержит элементы 1 и 2 включения, выполненные, например, в виде механического замка с электрическим контактом, исполнительный механизм 3, радиопередатчик 4, радиоприемник 5, средство 6 для копирования, индуктивности 7 и 8, средство 9 преобразования частоты, генератор 10 модулирующего кода, фазовый манипулятор 11, перемножители 12 и 13, узкополосный фильтр 14, фильтр 15 нижних частот, блок 16 памяти, коррелятор 17 и пороговый блок 18. Причем средство 9 преобразования частоты содержит гетеродин, смеситель и усилитель промежуточной частоты. Между колебательными контурами (индуктивностями) 7 и 8 последовательно включены средство 9 преобразования частоты и фазовый манипулятор 11, второй вход которого соединен с выходом генератора 10 модулирующего кода. К выходу радиоприемника 5 последовательно подключены первый перемножитель 12, второй вход которого соединен с выходом фильтра 15 нижних частот, узкополосный фильтр 14, второй перемножитель 13, второй вход которого соединен с выходом радиоприемника 5, фильтр 15 нижних частот, коррелятор 17, второй вход которого соединен с выходом блока 16 памяти, пороговый блок 18 и исполнительный блок 3, кинематически связанный с механическим замком 1 с выключателем 2 питания, соединенного с радиопередатчиком 4 и радиоприемником 5.

Электронный замок работает следующим образом.

При нажатии на ручку 1 замка замыкаются контакты, подавая питание на радиопередатчик 4 и радиоприемник 5. Радиопередатчик 4 излучает сигнал высокой частоты
UС(t) = UС•cos(Wct+ϕС),
0 ≤ t ≤ Tс,
где Uс, Wс, ϕc, Tс - амплитуда, несущая частота, начальная фаза и длительность сигнала.

Причем длительность Tс сигнала определяется временем нажатия на ручку 1 замка. Указанный сигнал принимается индуктивностью 7 (контуром), настроенным на несущую частоту Wс, и поступает на первый вход смесителя, на второй вход которого подается напряжение гетеродина
UГ(t) = UГ•cos(WГt+ϕГ)
на выходе смесителя образуются напряжения комбинационных частот. Усилителем промежуточной частоты выделяется напряжение промежуточной (разностной) частоты (фиг. 2, а)
Uпр(t) = Uпр•cos(Wпрt+ϕпр),
0 ≤ t ≤ Tс,
где
K1 - коэффициент передачи смесителя;
Wпр = Wс - Wг - промежуточная частота;
ϕСГ;
которое поступает на первый вход фазового манипулятора 11, на второй вход которого подается модулирующий код M(t) (фиг. 2, б) с выхода генератора 10 модулирующего кода. На выходе фазового манипулятора 11 образуется фазоманипулированный (ФМн) сигнал на промежуточной частоте (фиг. 2, в).


0 ≤ t ≤ Tс,
где ϕК(t)={0,π}- манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t) (фиг. 2, б), причем ϕК(t) = const при КτЭ < t < (K+1)τЭ и может изменяться скачком при t = KτЭ, т.е. на границах между элементарными посылками (K = 1, 2..., N-1);
τЭ,N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью TС(TС = N•τЭ);
который излучается в эфир посредством индуктивности (контура) 8, настроенной на промежуточную частоту Wпр.

Указанный ФМн-сигнал принимается радиоприемником 5, настроенным на промежуточную частоту Wпр, и поступает на входы перемножителей 12 и 13. На второй вход перемножителя 13 с выхода узкополосного фильтра 14 подается опорное напряжение (фиг. 2, г)
U0(t) = U0•cos(Wпрt+ϕпр),
0 ≤ t ≤ Tс.

В результате перемножения указанных сигналов образуется результирующее колебание

0 ≤ t ≤ Tс,
где
K2 - коэффициент передачи перемножителя.

Аналог модулирующей функции (фиг. 2, д)
U2(t) = U2•cosϕК(t),
0 ≤ t ≤ Tс
выделяется фильтром 15 нижних частот и подается на первый вход коррелятора 17 и на второй вход перемножителя 12, на выходе которого образуется гармоническое колебание

0 ≤ t ≤ Tс,
где
Данное колебание выделяется узкополосным фильтром 14 и подается на второй вход перемножителя 13.

Следовательно, перемножители 12 и 13, узкополосный фильтр 14 и фильтр 15 нижних частот обеспечивают выделение модулирующего кода M(t) из принимаемого ФМн-сигнала, т.е. синхронное его детектирование.

Необходимым условием синхронного детектирования ФМн-сигналов является наличие в точке приема опорного напряжения, имеющего постоянную начальную фазу и частоту, равную частоте принимаемого сигнала. Для выделения опорного напряжения непосредственно из принимаемого ФМн-сигнала разработано ряд интересных и оригинальных устройств (например, схемы Пистолькорса А.А., Сифорова В.И., Костаса Д.Ф., Травина Г.А. и др.). Однако указанным устройствам присуще явление "обратной работы", которое делает невозможным достоверное синхронное детектирование ФМн-сигналов.

Предлагаемые блоки, обеспечивающие синхронное детектирование принимаемого ФМн-сигнала, свободны от явления "обратной работы" и позволяют достоверно выделять модулирующую функцию M(t) (ее аналог) из принимаемого ФМн-сигнала.

Аналог модулирующего кода U2(t) (фиг. 2, д) с выходом фильтра 15 нижних частот поступает на первый вход коррелятора 17, на второй вход которого подаются модулирующие коды M1(t)-Mn(t), записанные заранее в блоке 16 памяти, где n - количество сотрудников, имеющих доступ к электронному замку, а следовательно, и санкционированный доступ к объекту охраны.

Каждый сотрудник объекта охраны имеет свой индивидуальный модулирующий код, который записан в блоке 16 памяти и в персональном ключе (средство 6 для кодирования). Выделенный из принимаемого ФМн-сигнала аналог модулирующего кода в корреляторе 17 со своим прототипом, записанным в блоке памяти, образует максимальное напряжение, пропорциональное корреляционной функции R(τ). Это напряжение превышает пороговый уровень Uпор в пороговом блоке 18. Пороговый уровень Uпор выбирается таким, чтобы его превышали только максимальные значения корреляционных функций. При превышении порогового напряжения Uпор в пороговом блоке 18 формируется управляющее напряжение, которое включает исполнительный механизм 3.

При отсутствии вблизи электронного замка средства для кодирования, которое может быть выполнено в виде ключа или брелока, сигнал на первом входе коррелятора 17 отсутствует и замок не открывается. Замок не открывается и в том случае, если модулирующий код, записанный в брелоке его владельца, не соответствует ни одному из кодов M1(t)-Mn(t), записанных в блоке 16 памяти.

Таким образом, предлагаемый электронный ключ по сравнению с прототипом обеспечивает повышение помехозащищенности, надежности и скрытности. Это достигается использованием сложных сигналов с фазовой манипуляцией, которые обладают структурной и энергетической скрытностью. Указанные сигналы позволяют применять новый вид селекции - структурную селекцию.

Похожие патенты RU2159836C1

название год авторы номер документа
ЭЛЕКТРОННЫЙ ЗАМОК 2000
  • Дикарев В.И.
  • Миллер В.Е.
  • Снарский К.И.
RU2172382C1
ЭЛЕКТРОННЫЙ ЗАМОК 2001
  • Дикарев В.И.
  • Миллер В.Е.
  • Снарский К.И.
  • Фомкин Ю.В.
RU2182636C1
ЭЛЕКТРОННЫЙ ЗАМОК 2002
  • Заренков В.А.
  • Заренков Д.В.
  • Дикарев В.И.
RU2217563C1
ЭЛЕКТРОННЫЙ ЗАМОК 2005
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
RU2283412C1
ЭЛЕКТРОННЫЙ ЗАМОК 2002
  • Дикарев В.И.
  • Журкович В.В.
  • Сергеева В.Г.
RU2207433C1
ЭЛЕКТРОННЫЙ ЗАМОК 2006
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
RU2317387C2
ЭЛЕКТРОННЫЙ ЗАМОК 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Петрушин Владимир Николаевич
  • Калинин Владимир Анатольевич
RU2441969C1
ЭЛЕКТРОННЫЙ ЗАМОК 2003
  • Дикарев В.И.
  • Журкович В.В.
  • Сергеева В.Г.
  • Рыбкин Л.В.
RU2240413C1
ЭЛЕКТРОННЫЙ ЗАМОК 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Петрушин Владимир Николаевич
  • Скворцов Андрей Геннадьевич
RU2423594C1
АКУСТООПТИЧЕСКИЙ АНАЛИЗАТОР СПЕКТРА 2001
  • Дикарев В.И.
  • Миллер В.Е.
  • Снарский К.И.
  • Фомкин Ю.В.
RU2214608C2

Иллюстрации к изобретению RU 2 159 836 C1

Реферат патента 2000 года ЭЛЕКТРОННЫЙ ЗАМОК

Изобретение относится к системам защиты различных объектов от доступа посторонних лиц и может быть использовано в электронных замках. Электронный замок содержит элементы, включенные, например, в виде механического замка с электрическим контактом, исполнительный механизм, радиопередатчик, радиоприемник, средство для кодирования, индуктивности, средство преобразования частоты, генератор модулирующего кода, фазовый манипулятор, перемножители, узкополосный фильтр, фильтр нижних частот, блок памяти, коррелятор и пороговый блок. Техническим результатом изобретения является повышение помехозащищенности, надежности и секретности. 2 ил.

Формула изобретения RU 2 159 836 C1

Электронный замок, содержащий расположенные на объекте охраны радиопередатчик, радиоприемник, выход которого соединен с исполнительным блоком, и элементы включения, выполненные в виде механического замка с выключателем питания, соединенного с радиопередатчиком и радиоприемником, а также средство для кодирования, расположенное вне объекта охраны и выполненное в виде двух колебательных контуров, соединенных между собой через средство преобразования частоты, при этом исполнительный блок кинематически связан с механическим замком, отличающийся тем, что он снабжен генератором модулирующего кода, фазовым манипулятором, двумя перемножителями, узкополосным фильтром, фильтром нижних частот, блоком памяти, коррелятором и пороговым блоком, причем между выходом средства преобразования частоты и вторым колебательным контуром включен фазовый манипулятор, второй вход которого соединен с выходом генератора модулирующего кода, между выходом радиоприемника и входом исполнительного блока последовательно включены первый перемножитель, второй вход которого соединен с выходом фильтра нижних частот, узкополосный фильтр, второй перемножитель, второй вход которого соединен с выходом радиоприемника, фильтр нижних частот, коррелятор, второй вход которого соединен с выходом блока памяти, и пороговый блок.

Документы, цитированные в отчете о поиске Патент 2000 года RU2159836C1

Электронный замок 1986
  • Грелих Юрий Иванович
  • Привалов Георгий Алексеевич
SU1326718A1
US 5534852 A, 09.07.1996
Способ определения параметров движения и траекторий воздушных объектов при полуактивной бистатической радиолокации 2018
  • Джиоев Альберт Леонидович
  • Косогор Алексей Александрович
  • Омельчук Иван Степанович
  • Тюрин Дмитрий Александрович
  • Фоминченко Геннадий Геннадьевич
  • Фоминченко Геннадий Леонтьевич
RU2687240C1
Устройство для нагнетательного проветривания тупиковой выработки 1979
  • Кизряков Анатолий Дмитриевич
  • Лигай Владимир Александрович
  • Шередекин Дмитрий Михайлович
  • Сызыков Ферузия Толеугалиевич
  • Польщиков Геннадий Васильевич
SU787675A1
ОКОННАЯ СВЕТОЗАЩИТНАЯ ШТОРА 0
SU178460A1
US 5151927 A, 29.09.1992
US 4000475 A, 28.12.1976.

RU 2 159 836 C1

Авторы

Дикарев В.И.

Миллер В.Е.

Снарский К.И.

Даты

2000-11-27Публикация

2000-01-24Подача