Изобретение относится к области гидромашиностроения и может быть использовано в гидравлических квантовых двигателях, относящихся к гидравлическим двигателям объемного вытеснения, которые применяются в гидромашиностроении, тепло- и электроэнергетике, для привода транспортных средств и т.п.
Наиболее близким по технической сущности к заявляемому является гидравлический квантовый двигатель, содержащий корпус с тангенциально расположенными камерами, в котором расположен роторный элемент, размещенный в приводной камере, при этом в верхней части каждой камеры установлено устройство впрыска, соединенное с магистралью подачи топливной смеси, и поджиговая система (см. авт.св. СССР N 1796776, кл. F 03 C 5/00, опубл. 1993). В известном устройстве роторный элемент выполнен в виде ротора с уступами, выполненными на его периферической поверхности, и установлен в приводной камере. Поджиговая система содержит по крайней мере два электрода, один из которых выполнен подвижным и установлен с возможностью вращения. Выделение и поглощение энергии при работе, инициируемое импульсными вспышками топливной смеси, происходит в форме квантов, и поэтому подобные гидравлические двигатели можно называть "квантовыми".
Недостатками известного устройства является низкая эффективность работы двигателя, обусловленная потерями при преобразовании энергии в гидротурбинном блоке, обусловленными малым объемом камер и незначительным крутящим моментом ротора. Кроме того, известное устройство имеет низкую эксплуатационную надежность, поскольку электроды поджиговой системы подвержены коррозии вследствие минеральных отложений на их поверхности. Корпус и роторный элемент известного устройства имеют значительные габариты и вес, что приводит к ухудшению его весогабаритных характеристик.
Задачей изобретения является повышение эффективности работы двигателя при одновременном повышении его эксплуатационной надежности и улучшении весогабаритных характеристик.
Решение указанной задачи обеспечивается новым гидравлическим квантовым двигателем, содержащим корпус с четным количеством размещенных в нем камер, предназначенных для частичного заполнения их рабочей жидкостью, в верхней части каждой из которых расположено устройство впрыска с управляемым клапаном, соединенное с магистралью подачи топливной смеси, и выпускной управляемый клапан, в нижней части камеры выполнены впускное и выпускное отверстия, при этом в камере установлен датчик давления, подключенный к блоку управления, в нижней части корпуса расположено гидрораспределительное устройство, состоящее из гидромагистралей, подключенных к отверстиям камеры, регулятора расхода и датчиков давления, установленных в гидромагистралях, и гидромотор, установленный в гидромагистрали гидрораспределительного устройства, причем блок управления соединен с управляемыми клапанами, регулятором расхода и датчиком давления гидрораспределительного устройства; при этом предпочтительно двигатель снабжать электрогенератором на супермагнитах, подключенных к гидромотору, и выполнять в виде единого блока с ним; блок управления выполнять в виде процессора с программным управлением и транзисторных переключателей, подключенных к регулятору расхода, датчикам гидрораспределительного устройства и управляемым клапанам; корпус выполнен в виде цилиндра.
Введение в двигатель гидрораспределительной системы, содержащей магистрали, подключенные к впускным и выпускным отверстиям камер, регулятор расхода и датчика давления в сочетании с использованием в качестве роторного элемента гидромотора позволило значительно повысить эффективность работы двигателя, поскольку исчезли ограничения на величину объема камер. Блок управления в заявленном двигателе соединен с управляемыми клапанами устройств впрыска топливной смеси, с выпускными управляемыми клапанами камер и с элементами гидрораспределительного устройства, что позволило образовать поджиговую систему без применения электродов и тем самым повысить эксплуатационную надежность двигателя. Кроме того, блок управления подключен к датчику оборотов гидромотора и регулятору расхода, установленному в гидрораспределительном устройстве, что обеспечивает автоматическое регулирование режима работы двигателя от нагрузки потребителя и также способствует повышению эффективности работы двигателя. Выполнение роторного элемента в виде гидромотора в сочетании с использованием электрогенератора на супермагнитах позволяет значительно уменьшить габариты и вес двигателя.
Приложенные чертежи изображают: фиг. 1 - общий вид гидравлического квантового двигателя, фиг. 2 - поперечное сечение двигателя в месте расположения камер, фиг. 3 - схема гидравлической системы заявленного устройства.
Заявленный гидравлический квантовый двигатель содержит: корпус 1 с камерами 2, предназначенными для частичного заполнения их рабочей жидкостью, в верхней части каждой из которых установлены устройство впрыска 3 с управляемым клапаном, соединенное с магистралью подачи топливной смеси, и выпускной управляемый клапан 4, гидрораспределительное устройство 5 и гидромотор 6 с подсоединенным к нему электрогенератором 7, образующими единый блок, размещены в нижней части корпуса, бак с топливной смесью8 и блок управления 9; в состав гидрораспределительного устройства входят: гидромагистрали10, датчик оборотов 11 гидромотора, подключенный к блоку управления, аккумуляторная батарея 12, которая может использоваться при запуске гидромотора, регулятор расхода 13, гидроклапаны 14, 15, при этом гидромагистрали подключены к впускным отверстиям 16 и выпускным отверстиям 17, выполненным в нижних стенках камер, резервный бак 18 для топливной смеси, насос 19 с двигателем 20, фильтр 21, датчик давления 22, установленный в гидромагистрали, датчики давления 23, 24, установленные в камерах, рабочая жидкость 25, частично заполняющая камеры; системы энергопитания 26 блока управления и электрические магистрали 27 для подключения к блоку управления.
Корпус 1 предпочтительно выполнять в форме цилиндра, так как он не является силовым элементом, а нагрузки, возникающие при повышении давления, воспринимаются стенками камер 2. Устройство впрыска топливной смеси 3 может быть выполнено в различных модификациях, предпочтительно в виде форсунок с управляемыми клапанами. Гидрораспределительное устройство 5 содержит гидромагистрали 10, подключенные к гидромотору 6, который может быть выполнен шестеренчатым лопастным. Гидромагистрали 10 подсоединены также к впускным отверстиям 16 и выпускным отверстиям 17 камер 2 (см. фиг.3). В гидрораспределительном устройстве 5 предусмотрены регулятор расхода 13 и датчики давления 22, подключаемые к блоку управления 9. Предпочтительно гидромотор 6 подсоединять с электрогенератором 7, выполненным на супермагнитах, например, изготавливаемых из никель-кадмиевого сплава. Блок управления 9 предпочтительно выполнять в виде процессора с программным управлением и транзисторных переключателей, например тиристорах переключателей. Блок управления 9 подключен к регулятору расхода 13, датчикам давления 22, 23, 24, к датчику оборотов 11 гидромотора, а также к управляемым клапанам устройств впрыска 3 топливной смеси и к выпускным управляемым клапанам 4, что обеспечивает четкое взаимодействие системы впрыска топливной смеси и работы гидрораспределительного устройства 5. В качестве рабочей жидкости 25, которой частично заполняются камеры 2, используется масло или специальные высокотемпературные жидкости. В качестве топливной смеси, подаваемой в верхние части камер 2 через устройства впрыска 3, используют воду, кислород или водород.
Заявленный гидравлический квантовый двигатель работает следующим образом. Предварительно все четные (или нечетные) камеры 2 заполняют на 0,6-0,7 часть от их общего объема рабочей жидкостью. При впрыскивании топливной смеси через устройства впрыска 3 в верхнюю часть каждой заполненной камеры 2 происходит детонационный взрыв, обусловленный образованием капиллярно-конденсированной воды и динамических ассоциатов (H2O)n. В результате этого взрыва в заполненных черных камерах 2 скачком значительно (на десятки атмосфер) увеличивается давление на жидкость, которая поступает в гидрораспределительное устройство 5, воздействуя при этом на датчики давления 22, 23 и 24 и на регулятор давления 13, сигналы с которых поступают на блок управления 9. Жидкость через регулятор расхода 13 под высоким давлением поступает в гидромотор 6, кинематически связанный с электрогенератором 7. Крутящий момент от вала гидромотора 6, вращающийся обычно со скоростью 1500-5000 об/мин, передается на вал электрогенератора 7, к выходным клеммам которого подключена нагрузка потребителя (не указаны). После того как жидкость вытесняется из четных камер 2, она проходит через гидромотор 6 и заполняет нечетные камеры 2, и затем цикл повторяется. На фиг. 3 изображен двигатель в процессе перетекания рабочей жидкости из четных камер 2 в нечетные. Блок управления 9 обрабатывает сигналы, поступающие с регулятора расхода 13, датчиков давления 22, 23 и 24, датчиков оборотов 11 гидромотора 6, и таким образом обеспечивается обратная связь гидрораспределительного устройства 5 с нагрузочными параметрами электрогенератора 7. При увеличении электрической нагрузки подключенный к электрогенератору 7 регулятор расхода 13 по команде с блока управления 9 увеличивает поток жидкости через гидромотор 6 и соответственно при уменьшении нагрузки поток уменьшается.
Были изготовлены опытные образцы заявленного гидравлического квантового двигателя, которые успешно прошли стендовые и натурные испытания. Анализ результатов испытаний показал, что в сравнении с известным эффективность работы заявленного двигателя увеличилась более чем на 30%, эксплуатационная надежность увеличилась в 1,5 раза. Весогабаритные характеристики улучшились на 50% при одновременном увеличении удельной мощности на 40%.
название | год | авторы | номер документа |
---|---|---|---|
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2001 |
|
RU2177562C1 |
УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТИ | 2000 |
|
RU2162571C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛА | 2000 |
|
RU2165054C1 |
СВОБОДНОПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 1995 |
|
RU2103529C1 |
Гидропривод стрелы землеройно-транспортной машины | 1981 |
|
SU1016449A1 |
ДВИГАТЕЛЬНАЯ УСТАНОВКА ТРАНСПОРТНОГО СРЕДСТВА | 2019 |
|
RU2718097C1 |
Двигатель внутреннего сгорания с гидравлическим приводом | 1985 |
|
SU1301998A1 |
Гидропривод стрелы экскаватора (его варианты) | 1983 |
|
SU1143814A1 |
УСТРОЙСТВО ДЛЯ ЗАПУСКА СВОБОДНОПОРШНЕВОГО ДВИГАТЕЛЯ С ПОМОЩЬЮ ГИДРАВЛИЧЕСКОЙ СИСТЕМЫ | 1991 |
|
RU2050449C1 |
СПОСОБ РАБОТЫ СИСТЕМЫ ПОДАЧИ РАБОЧЕГО ТЕЛА ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2293200C2 |
Изобретение относится к области энергомашиностроения и предназначено для использования в качестве стационарной или передвижной силовой установки. Оно позволяет повысить эффективность установки при одновременном повышении эксплуатационной надежности и улучшении массогабаритных характеристик. Гидравлический квантовый двигатель содержит корпус с четным количеством камер, частично заполненных рабочей жидкостью. В верхней части каждой камеры расположено устройство впрыска с управляемым клапаном, соединенное с магистралью подачи топливной смеси, и выпускной управляемый клапан. В нижней части камер выполнены впускное и выпускное отверстия и установлен датчик давления, подключенный к блоку управления. В нижней части корпуса расположено гидрораспределительное устройство, состоящее из гидромагистралей, подключенных к отверстиям камеры, регулятора расхода и датчиков давления. В гидромагистрали гидрораспределительного устройства установлен гидромотор. Блок управления соединен с управляемыми клапанами, регулятором расхода и датчиком давления гидрораспределительного устройства. Двигатель содержит электрогенератор на супермагнитах, подключенный к гидромотору. Блок управления выполнен в виде процессора с программным управлением и транзисторных переключателей, подключенных к регулятору расхода, датчикам гидрораспределительного устройства и управляемым клапанам. 3 з.п. ф-лы, 3 ил.
Двигатель внутреннего сгорания с гидравлической передачей | 1976 |
|
SU672362A1 |
Двигатель внутреннего сгорания с гидравлическим приводом | 1985 |
|
SU1301998A1 |
RU 2066383 С1, 10.09.1996 | |||
СВОБОДНОПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 1991 |
|
RU2018004C1 |
СПОСОБ МАГНИТНО-РЕЗОНАНСНОЙ ГЕОЛОГИЧЕСКОЙ РАЗВЕДКИ ЗАЛЕЖЕЙ ВОДЫ И УГЛЕВОДОРОДОВ | 1993 |
|
RU2090910C1 |
US 4326380 А, 27.04.1982 | |||
US 4966000 А, 30.10.1990 | |||
DE 2933283 А1, 08.04.1982. |
Авторы
Даты
2000-12-20—Публикация
2000-06-30—Подача