Предлагаемое изобретение относится к космической технике, а точнее к области проектирования и эксплуатации ракетных двигательных установок (ДУ) космических аппаратов (КА).
Известна система подачи топлива двигательной установки космического орбитального комплекса (патент России №2135808; дата подачи заявки: 30.12.1997 г.; F 02 K 9/50)
Система подачи топлива двигательной установки космического орбитального комплекса, состоящая из автономных подсистем, содержащих топливные баки, гидравлические полости которых соединены с коллекторами питания топливом реактивных двигателей магистралями подачи топлива с пускоотсечными клапанами, и систему дозаправки топлива, содержащую топливные баки, гидравлические полости которых соединены с одной из автономных подсистем через узлы стыковки гидромагистралями перекачки топлива, подключенными через пускоотсечные клапаны к магистралям подачи топлива от баков в коллекторы. Особенность этой системы заключается в том, что она снабжена дополнительными магистралями перекачки топлива с пускоотсечными клапанами, связывающими магистрали подачи топлива другой подсистемы с гидромагистралями перекачки топлива, причем дополнительные магистрали перекачки топлива с одной стороны подключены к магистралям подачи топлива перед пускоотсечными клапанами, установленными на входах в коллекторы, и с другой стороны подключены к гидромагистралям перекачки топлива между узлами стыковки гидромагистралей и пускоотсечными клапанами, отделяющими эти узлы от гидравлических полостей топливных баков системы дозаправки топлива.
Недостаток указанной ДУ заключается в большой ее массе в связи с ее сложностью при использовании двух видов рабочих тел (горючего и окислителя). Кроме того, ее принципиальная схема не позволяет обеспечивать работу в двух режимах с разными тягами реактивного двигателя, что снижает эффективность ее применения при выполнении малых и больших корректировок орбиты.
Известна корректирующая двигательная установка (КДУ) для аппаратов типа «Ресурс» (книга «Конструирование автоматических космических аппаратов» под редакцией чл.-кор. РАН Д.И.Козлова. Москва. Машиностроение. 1996. Стр.419-422), включающая: шар-баллоны, датчики давления, электропневмоклапаны, блок редукторов, клапаны наддува, обратные клапаны, полости бака, пневмоклапаны, заправочные горловины, сигнализаторы давления, камеру сгорания.
Недостаток указанной КДУ заключается в большой ее массе в связи с ее сложностью при использовании двух видов рабочих тел (горючего и окислителя). Кроме того, ее принципиальная схема не позволяет обеспечивать работу в двух режимах с разными тягами двигателя, что снижает эффективность ее применения при выполнении малых и больших корректировок орбиты.
В качестве прототипа выбран способ работы, осуществленный в устройстве под названием «Ракета с разделенными рабочим телом и источником энергии» (книга «Космическая техника» под редакцией Г.Сейфера. Перевод с английского под редакцией А.И.Лурье. Издательство «Наука». Москва. 1964. Стр.268-269), заключающийся в том, что осуществляют раздельную подачу рабочего тела из бака и энергию от ее источника - ядерного реактора в реактивный двигатель для их взаимодействия и работы двигателя.
Прототип как устройство содержит: емкость с рабочим телом, выполненную с выходной магистралью, ускоритель (сопло с камерой взаимодействия рабочего тела с подаваемой энергией), источник энергии с магистралью подачи ее в ускоритель.
Недостаток прототипа заключается в том, что он обладает большой массой из-за применения в нем в качестве источника энергии ядерного реактора деления урана-235, как следствие этого он ограничен по условиям применения, например, не может применяться для реактивных двигателей коррекции и стабилизации КА как отдельная самостоятельная ДУ.
Цель предложенного способа - повышение эффективности работы двигательной установки и снижение массы.
Поставленная цель достигнута за счет того, что в способе работы системы подачи рабочего тела двигательной установки космического аппарата, включающем подачу в реактивный двигатель рабочего тела из баллона высокого давления с выходной магистралью и энергии от ее источника для их взаимодействия в реактивном двигателе во время его работы, до поступления рабочего тела в реактивный двигатель дополнительно осуществляют взаимодействие рабочего тела в дросселе с источником энергии в виде электронагревателя, и осуществляют регулирование подачи рабочего тела путем пропускания его или одновременно через параллельные понижающие давление магистрали или через одну из них; в системе подачи рабочего тела двигательной установки космического аппарата, содержащей баллон высокого давления, заполненный рабочим телом и имеющий выходную магистраль с установленным в ней дросселем, которая подключена к понижающей давление магистрали, включающей последовательно установленные пускоотсечной клапан, функционально связанный с блоком управления, редуктор давления и ресивер, установленный перед реактивным двигателем, снабженный источником энергии, и температурный датчик, дроссель выполнен в виде коаксиально установленного в выходной магистрали электронагревателя с резьбовым дросселирующим соединением его наружной поверхности с ее внутренней поверхностью и функционально связанного с блоком управления, причем выходная магистраль выполнена с наружной теплоизоляцией; ресивер выполнен со сквозной трубой с оребрением со стороны его полости, в которую установлен электронагреватель, функционально связанный через блок управления с температурным датчиком, установленным на ресивере, выполненным с наружной теплоизоляцией; к ресиверу подключен выход дополнительной понижающей давление магистрали, включающей последовательно установленные пускоотсечной клапан и редуктор давления, выполненные аналогичными, как в основной понижающей давление магистрали, а вход ее подключен между дросселем и пускоотсечным клапаном основной понижающей давление магистрали.
Сущность предложенного способа заключается в том, что дополнительно осуществляют взаимодействие рабочего тела в дросселе с источником энергии в виде электронагревателя, причем пропускание рабочего тела через дроссель осуществляют через подогреваемый указанным электронагревателем межрезьбовой дросселирующий проход, при этом мощность электрообогревателя обеспечивают на уровне, исключающем конденсацию рабочего тела в выходной магистрали после дросселя, далее осуществляют регулирование подачи рабочего тела путем пропускания его одновременно через две параллельные понижающие давление магистрали или через одну из них в зависимости от необходимости создания соответственно двойной или одинарной тяги реактивного двигателя. Реализация предложенного способа позволила повысить эффективность работы устройства по повышению точности и стабильности давления рабочего тела, подаваемого в РД, при снижении массовых затрат устройства.
Анализ известных технических решений в исследуемой области позволяет сделать вывод об отсутствии признаков, сходных с совокупностью признаков заявленного объекта.
Осуществление заявленного способа работы системы подачи рабочего тела двигательной установки космического аппарата (КА) поясняется с помощью устройства, представленного на чертеже, где на фиг.1 показана принципиальная схема системы подачи рабочего тела двигательной установки космического аппарата с реактивным двигателем (РД) 1, включающая: баллон 2 высокого давления с рабочим телом с его выходной магистралью 3, в которой установлен дроссель 4, снабженный электронагреватем 5, функционально связанным с блоком управления 6, и которая подключена к основной понижающей давление магистрали 7, включающей последовательно установленные пускоотсечной клапан 8, функционально связанный с блоком управления 6, редуктор давления 9, ресивер 10 с установленным на нем температурным датчиком 11, функционально связанный через блок управления 6 с электронагревателем 12, которым снабжен ресивер 10, установленный перед реактивным двигателем 1, дополнительную понижающую давление магистраль 13, выход 14 которой подключен к ресиверу 10, а ее вход 15 - между дросселем 4 и пускоотсечным клапаном 8, включающую свои пускоотсечной клапан 16 и редуктор давления 17, выполненные аналогичными, как в основной магистрали 7, заправочную горловину 18, подключенную к выходной магистрали 3; на фиг.2 показан дроссель 4, выполненный в виде коаксиально установленного в выходной магистрали 3 электронагревателя 5 с резьбовым дросселирующим соединением 19 его наружной поверхности с ее внутренней поверхностью и функционально связанного с блоком управления 6, причем выходная магистраль 3 выполнена с наружной теплоизоляцией 20; на фиг.3 показан ресивер 10, с установленным на нем температурным датчиком 11 и выполненным с электронагревателем 12, установленным в сквозной трубе 21, ресивера 10, выполненной с оребрением 22 с ее наружной стороны; электронагреватель 12 функционально связан через блок управления 6 с температурным датчиком 11, а ресивер 10 выполнен с наружной теплоизоляцией 23.
Система подачи рабочего тела двигательной установки КА предназначена для обеспечения подачи газообразного рабочего тела со стабилизированным давлением на уровне (1,75±0,1) кгс/см2 как с одинарным, так и с двойным расходом в РД 1, который, соответственно, может работать с одинарной или двойной тягой.
Система работает следующим образом. В исходном состоянии баллон 2 высокого давления заправлен рабочим телом через заправочную горловину 18 под давлением 250 кгс/см2. Перед включением РД 1 с помощью блока управления 6 в режим работы, например, с одинарной тягой, предварительно включаются в работу электронагреватели 5 и 12 соответственно для обогрева дросселя 4 и ресивера 10. После чего управление работой электронагревателя 12 осуществляется по предельным показаниям (20±3)°С температурного датчика 11 (соответственно выключение и включение). При этом с помощью блока управления 6 открывается пускоотсечной клапан 8 на заданное время работы РД 1. Потребляемая мощность электронагревателя 5 выбрана (расчетным путем с последующим экспериментальным подтверждением) из условия гарантированного исключения конденсата рабочего тела в выходной магистрали 3 после дросселя 4. Эффективность работы электронагревателя 5, являющегося составной частью дросселя 4, обеспечена за счет того, что он установлен внутри выходной магистрали 3, а его наружная поверхность соединена с ее внутренней поверхностью посредством резьбового соединения 19, выполненного одновременно в качестве дросселирующего межрезьбового прохода, обеспечивающего развитую турбулезующую нагреваемую поверхность для прохода и подогрева рабочего тела, чтобы исключить образование и попадание конденсата в редуктор давления 9 и тем самым обеспечить его работу с более стабильным выходным давлением.
Давление рабочего тела при прохождении через дроссель 4 понижается, а после прохождения через редуктор давления 9 обеспечивается на уровне (1,75±0,1) кгс/см2. Перед поступлением в РД 1 рабочее тело проходит через ресивер 10, который сглаживает колебания давления. Для того чтобы при внезапном расширении рабочего тела в ресивере 10 не образовывался конденсат, внутри его поддерживается температура на уровне (20±3)°С, что обеспечивается за счет работы электронагревателя 12, установленного в сквозной трубе 21, выполненной с оребрением 22, которое увеличивает площадь взаимодействия газообразного рабочего тела с нагреваемой поверхностью и тем самым повышается эффективность работы электронагревателя 12 и ресивера 10 в целом. Ресивер 10 выполнен с наружной теплоизоляцией 23, что дополнительно повышает эффективность работы ресивера 10 за счет снижения тепловых потерь с его наружной поверхности. Таким образом осуществляется подача рабочего тела в РД 1 с обеспечением повышенной точности и стабильности его расхода и давления без образования конденсата, что позволило в целом повысить эффективность работы РД 1 и всей двигательной установки.
Если включается в работу РД 1 с двойной тягой, то с помощью блока управления 6 дополнительно открывается пускоотсечной клапан 16, что позволяет увеличить общий расход рабочего тела почти в два раза. И таким образом обеспечивается повышение эффективности работы двигательной установки за счет того, что она может работать в двух режимах, а именно для малых и больших корректировок орбиты.
В предложенном решении ресивер 10 используется одновременно для работы двух понижающих давление магистралей 7 и 13. Это позволило повысить эффективность системы в снижении массовых затрат при реализации предложенного способа ее работы.
Предложенная система подачи рабочего тела двигательной установки космического аппарата в настоящее время проходит отработочные испытания.
название | год | авторы | номер документа |
---|---|---|---|
БЛОК ПОДАЧИ РАБОЧЕГО ТЕЛА В РЕАКТИВНЫЙ ДВИГАТЕЛЬ КОСМИЧЕСКОГО АППАРАТА | 2016 |
|
RU2651703C1 |
СИСТЕМА ПОДАЧИ ТОПЛИВА | 2006 |
|
RU2339832C2 |
СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ | 2006 |
|
RU2339835C2 |
СИСТЕМА ПОДАЧИ ТОПЛИВА | 2009 |
|
RU2407907C1 |
СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ (ВАРИАНТЫ) | 2006 |
|
RU2341675C2 |
СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ | 2006 |
|
RU2339834C2 |
СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО ОРБИТАЛЬНОГО КОМПЛЕКСА | 1997 |
|
RU2131989C1 |
СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ ГОРЮЧЕГО И ОКИСЛИТЕЛЯ ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 1997 |
|
RU2140003C1 |
СИСТЕМА НАДДУВА ТОПЛИВНЫХ БАКОВ ГОРЮЧЕГО И ОКИСЛИТЕЛЯ ДВИГАТЕЛЬНОЙ УСТАНОВКИ КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА | 1998 |
|
RU2147344C1 |
СПОСОБ РАБОТЫ КИСЛОРОДНО-КЕРОСИНОВЫХ ЖИДКОСТНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ (ЖРД) И РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА | 2013 |
|
RU2542623C1 |
Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации ракетных двигательных установок (ДУ) космических аппаратов (КА). Способ работы системы подачи рабочего тела двигательной установки космического аппарата, включающий раздельную подачу в реактивный двигатель рабочего тела из баллона высокого давления с выходной магистралью и энергии от ее источника, например плазменного, для их взаимодействия в реактивном двигателе во время его работы. Новым в способе является то, что до поступления рабочего тела в реактивный двигатель осуществляют его взаимодействие с дополнительным источником энергии, при этом в качестве источника энергии используют электронагреватель. Система подачи рабочего тела двигательной установки космического аппарата включает баллон высокого давления, заполненный рабочим телом и имеющий выходную магистраль с установленным в ней дросселем, которая подключена к понижающей давление магистрали, включающей последовательно установленные пускоотсечной клапан, функционально связанный с блоком управления, редуктор давления и ресивер, установленный перед реактивным двигателем, снабженным источником энергии, например плазменным, раздельно подаваемой в него, температурный датчик, при этом дроссель выполнен в виде коаксиально установленного в выходной магистрали электронагревателя с резьбовым дросселирующим соединением его наружной поверхности с ее внутренней поверхностью и функционально связанного с блоком управления, причем выходная магистраль выполнена с наружной теплоизоляцией; ресивер выполнен со сквозной трубой с оребрением со стороны его полости, в которую установлен электронагреватель, функционально связанный через блок управления с температурным датчиком, установленным на ресивере, выполненном с наружной теплоизоляцией; к ресиверу подключен выход дополнительной понижающей давление магистрали, включающей последовательно установленные пускоотсечной клапан и редуктор давления, выполненные аналогично основной понижающей давление магистрали, а вход ее подключен между дросселем и пускоотсечным клапаном основной понижающей давление магистрали. Изобретение обеспечивает повышение эффективности работы двигательной установки и снижение массы. 2 н. и 2 з.п. ф-лы, 3 ил.
Космическая техника | |||
Под ред | |||
Г.Сейфера | |||
Перевод с английского под ред | |||
А.И.Лурье | |||
- М.: Наука, 1964, с.268-269 | |||
СОЛНЕЧНЫЙ ТЕПЛОВОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО РАБОТЫ | 2002 |
|
RU2197630C1 |
СПОСОБ ПОДАЧИ УГЛЕВОДОРОДНОГО ТОПЛИВА В РЕАКТИВНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКЕ ЛЕТАТЕЛЬНОГО АППАРАТА И РЕАКТИВНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА ЛЕТАТЕЛЬНОГО АППАРАТА | 1981 |
|
RU2046203C1 |
УСТРОЙСТВО ДЛЯ ПОДДЕРЖАНИЯ ДАВЛЕНИЯ ТЕПЛОНОСИТЕЛЯ В КОНТУРЕ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА | 2000 |
|
RU2193149C2 |
GB 1167948 A, 22.10.1969. |
Авторы
Даты
2007-02-10—Публикация
2005-03-11—Подача