ЛАМПА СТОЯЧЕЙ ВОЛНЫ Российский патент 2001 года по МПК H03B9/02 H01J25/10 

Описание патента на изобретение RU2163415C2

Изобретение относится к области радиоэлектроники и предназначено для усиления и генерации свервысокочастотных электромагнитных колебаний.

Известны устройства, выполняющие такие же функции, например клистроны разных типов, магнетроны, лампы бегущей и лампы обратной волны, генератор на твердотельных элементах [1] . По технической сущности наиболее близким к предлагаемому устройству является прямопролетный двухрезонаторный клистрон, выбираемый в качестве прототипа. Он состоит из источника электронов (катода), коллектора (анода) и двух расположенных между ними объемных резонаторов. Эмитированные катодом электроды под воздействием приложенной к коллектору положительной относительно катода разности потенциалов движутся к аноду, пролетая по пути последовательно первый и второй резонаторы. Если в первом резонаторе действует переменное электромагнитное поле, происходит модуляция потока электронов по скорости. Пролетая через второй резонатор, электроды модулированного потока периодически отдают ему свою энергию. В результате этого во втором резонаторе также возбуждается электромагнитное поле. Если отдавая второму резонатору энергия больше энергии, затрачиваемой на модуляцию потока, имеет место усиление. Если резонаторы соединены между собой по высокой частоте и часть колебательной энергии из второго резонатора в соответствующей фазе поступает на вход первого, то за счет такой обратной связи возникают условия, при которых в системе развиваются автоколебания на частоте, близкой к собственной частоте резонатора.

Конструктивно клистронный генератор оказывается достаточно сложным, требующим сопряжения по частоте его резонаторов, выполнения строгих условий фазировки обратной связи, усиливаемая или генерируемая частота может регулироваться в узких пределах.

Целью настоящего предлагаемого изобретения является создание конструктивно более простого устройства, выполняющего те же функции, что и клистрон, с возможностью изменения рабочей частоты в более широких пределах простым управлением.

Сущность изобретения состоит в том, что в вакуумированный резонатор с распределенными параметрами, представляющий собой, например отрезок волновода с проводящими стенками, устанавливаются катод и анод, разнесенные по продольной оси резонатора. В зависимости от положения этих электродов, выбираемого исходя из условий, которые будут определены ниже, система может быть устойчивой или в ней возникают автоколебания. На пороге неустойчивости возможно регенеративное усиление подаваемых на устройство сигналов. Изменение рабочей частоты достигается изменением длины резонатора относительно номинального значения. Оценка показывает, что пределы регулирования могут составлять не менее ±10%. Кроме того, возможна работа устройства на гармониках основной частоты резонатора.

Между отличительными признаками и достигнутым результатом существует следующая причинно-следственная связь. Исключение из конструкции объемных резонаторов существенно ее упрощает, увеличивает технологичность изготовления, снижает себестоимость. Расширение диапазона регулирования рабочей частоты, возможность работы на гармониках основной частоты делают устройство более универсальным.

По имеющимся у заявителя сведениям совокупность существенных признаков заявляемого изобретения не известна из уровня техники, что позволяет сделать вывод о соответствии изобретения критерию "новизна".

По мнению заявителя сущность заявляемого изобретения не следует непосредственно из известного уровня техники, не является очевидной. Об этом говорит и то, что за более, чем полувековой период интенсивного развития техники СВЧ колебаний, такое решение не было предложено. Это позволяет сделать вывод о соответствии предлагаемого изобретения критерию "изобретательский уровень".

Совокупность существенных признаков, характеризующих сущность изобретения, позволяют множественное тиражирование, использование в системах связи, радиолокации, радионавигации, в исследованиях. Это позволяет сделать вывод о соответствии изобретения критерию "промышленная применимость".

Для демонстрации возможности создания такого устройства и определения условий выбора положений анода и катода, при которых усиление колебаний или их возбуждение становится реальным, рассмотрим энергетический баланс электромагнитных колебаний в прямоугольном резонаторе (фиг. 1) при следующих условиях:
1. Стенки резонатора при x = 0, y = 0, x = 0, y = B, z = C имеют абсолютную проводимость.

2. При x = A проводимость стенки конечна, но так велика, что в первом приближении тангенциальную составляющую вектора электрической напряженности на границе x = A можно считать равной нулю - достаточно простое граничное условие, определяющее ориентацию оси Ox.

3. В сечении x = a имеется источник (катод), от которого поток электронов движется в направлении оси Ox и в сечении x = b собирается коллектором (анодом).

4. Пространство между катодом и анодом вакуумировано.

Как известно, используя уравнения Максвелла и правила векторного анализа, скорость изменения электромагнитной энергии в объеме резонатора (мощность) на дискретной частоте можно определить как

или

где W - энергия, t - время, E - вектор электрической напряженности, H* - сопряженный комплекс вектора магнитной напряженности H, ω - частота, μ - магнитная проницаемость, ε - диэлектрическая проницаемость, σ - удельная проводимость среды, j = (-1)1/2, E и H - модули соответствующих комплексов. Будем считать, что во всем объеме резонатора ε и μ остаются постоянными, а σ отлична от нуля, оставаясь много меньше ωε, и постоянная только в области, занимаемой электронным потоком.

В случае рассматриваемого "идеального" резонатора первое и второе слагаемые (1) - мнимые и определяют реактивную мощность, т.е. скорость изменения энергии, запасаемой в резонаторе в форме переменных магнитного и электрического полей. Сумму этих составляющих на собственных частотах резонатора можно считать равной нулю, третье слагаемое - действительное и определяет сумму мощности, поступающей в систему, и мощности, расходуемой в ней, т.е. общую активную мощность колебаний. Проанализируем его.

Выбранные выше граничные условия определяют направление вектора плотности потока электромагнитной энергии в резонаторе (вектора Пойнтинга) по оси Ox. Поскольку E и H ортогональны вектору Пойнтинга, они должны лежать в плоскости, параллельной плоскости yOz. Учитывая, что эти три вектора образуют правую взаимно ортогональную тройку, ориентацию поля в резонаторе относительно системы координат выбираем таким образом, что E = jEy и H = k Hz, где j и k - орты. В этом случае уравнения Максвелла
rotH = σE+ε∂E/∂t и rotE = -μ∂H/∂t
сводятся к скалярным уравнениям
∂Ey/∂x = μ∂Hz/∂t и ∂Hz/∂x = -(σEy+ε∂Ey/∂t),
определяющим волновое уравнение для напряженности Ey:
2Ey/∂x2 = c-2d2Ey/∂t2+μσ∂Ey/∂t.
Его решение относительно геометрических координат имеет вид:
Ey = Eo exp (jkx),
где Eo - максимальное значение Ey, k = (1-jσ/2ωε)ω/c- волновое число, c - скорость распространения электромагнитных колебаний. Учитывая, что σ ≪ ωε, можно считать k ≈ ko = ω /с.

Таким образом, при принятых условиях активную мощность можно определить только соответствующей электрической напряженности Ey:

или в тригонометрической форме записи:

Из (2) видно, что значение мощности Re (dW/dt) увеличивается по абсолютной величине пропорционально проводимости среды, т.е. плотности и скорости электронного потока, а в зависимости от a и b Re (dW/dt) не только меняется по величине, но и может изменять знак. Если Re (dW/dt) < 0, то энергия электромагнитного поля в резонаторе убывает. Если
Re (dW/dt) ~ sin 2k0a - sin 2 k0b > 0, (3)
то эта энергия увеличивается, что говорит о развитии автоколебаний.

В зависимости от положения границ области проводимости a и b автоколебания могут возникать на разных гармониках, имеющих частоты, близкие к собственным частотам резонатора. Например, для самой низкой возможной частоты, соответствующей полуволновому резонатору системы по Ox, условие неустойчивости (3) выполняется в наибольшей степени при a = A/4 и b = 3A/4.

Полученный результат следует понимать так, что те участки электронного потока в поле стоячей волны в резонаторе, для которых cos 2 k0 x > 0, поглощают энергию электромагнитного поля, энергия электронов на них возрастает. Участки потока, для которых cos 2 k0 x < 0, отдают энергию электронов электромагнитному полю, что приводит к их торможению. Исключая в той или иной степени участки поглощения и сохраняя при этом участки регенерации энергии в резонаторе, создаем условия для неустойчивости системы, для возникновения автоколебаний.

Чтобы распределение поля стоячей волны в резонаторе определялось граничными условиями при x = 0 и x = A, катод и анод на частоте выбранной моды колебаний должны быть прозрачны для электромагнитной энергии. Этого можно достигнуть, например, выполнив их в виде решеток из стержня, параллельных выбранному направлению вектора электрической напряженности.

Поскольку катод и анод могут находиться одновременно под потенциалом генерируемых колебаний и постоянной разностью потенциалов, обеспечивающей протекание тока в промежутке между катодом и анодом, они должны быть подключены к источнику питания через соответствующие развязывающие реактивные или резонансные фильтры, исключающие демпфирование резонатора на частоте генерации низким выходным сопротивлением источника.

Перестройка частоты генерации может осуществляться путем изменения длины резонатора. Ожидаемое при этом изменение частоты может составить величину порядка 20% номинального для выбранной моды колебаний ее значения.

Переход из режима генерации в режим регенеративного усиления или обратно может осуществляться за счет изменения разности потенциалов между анодом и катодом, изменения эмиссии катода или выбора положений катода и анодом внутри резонатора.

Если учитываются потери энергии в системе за счет конечной собственной добротности резонатора, то для выполнения условия неустойчивости абсолютная величина их мощности должна быть меньше Re (dW/dt).

При a = 0 и b = A система будет устойчива.

О попытках создать автогенератор электромагнитных колебаний на основе изложенных представлений, т. е. путем формирования определенного пространственного распределения плотности электронного потока в поле стоячей волны в резонаторе, не известно. Однако можно полагать, что такая возможность подтверждается экспериментально. Основания для этого следующие.

1. Известно, что волновые процессы описываются одним и тем же волновым уравнением вне зависимости от природы волн: практически одинаково описываются поля электромагнитных и акустических колебаний. Это обстоятельство послужило, в частности, основанием для разработки теории электромеханических и электроакустических аналогий [2], которая, с одной стороны, позволила успешно применять хорошо разработанные расчетные методы электротехники при решении акустических задач, а с другой - моделировать колебательные процессы в механических и акустических системах технически более простыми средствами электротехники.

2. Рэлей [3] описывает опыты Рийке, Босша и Рисса 1859 года, которые до настоящего времени не имеют теоретического обоснования. Опыт Рийке состоит в том, что вертикально установленной трубе конечной длины поперек ее сечения помещалась малая сетка. Сетка нагревалась газовым пламенем. Когда пламя удалялось, в системе возникали акустические автоколебания на частоте, соответствующей частоте полуволнового резонанса трубы, длившейся несколько секунд, пока сетка оставалась достаточно горячей. Автоколебания возникали в случае, если сетка помещалась на расстоянии приблизительно четверти длины трубы от ее нижнего конца. Этот опыт Рэлей рекомендует в качестве простого и эффективного лекционного эксперимента.

Опыты Босша и Рисса были аналогичны, но, в отличие от опытов Рийке, сетка помещалась на расстоянии четверти длины трубы от ее верхнего конца и охлаждалась. В системе также возникали автоколебания.

Результаты этих опытов, в которых роль электронного потока играл поток тепла, отдаваемого конвективному потоку газа или отнимаемого у него, соответствуют полученному условию (3), что можно рассматривать как косвенное его подтверждение.

Схема реализации устройства приведена на фиг. 2, где 1 - резонатор, 2 - вакуумированный стеклянный баллон, 3 - катод, 4 - анод, 5 - цепь входа устройства в режиме усиления, 6 - цепь выхода энергии, 7 - подвижные торцевые стенки резонатора, 8 - частотные фильтры, 9 - источник питания.

Похожие патенты RU2163415C2

название год авторы номер документа
ШНЕКОВЫЙ ВЕТРОРОТОР 1996
  • Смульский И.И.
  • Мельников В.П.
  • Кавун И.Н.
RU2101560C1
ВЕТРОУСТАНОВКА 1994
  • Смульский И.И.
  • Липчинский М.И.
RU2088798C1
СПОСОБ ПОЛУЧЕНИЯ ПРЕСНОЙ ВОДЫ 1998
  • Мельников В.П.
  • Горелик Я.Б.
  • Колунин В.С.
RU2133798C1
ЭЛЕКТРОВАКУУМНЫЙ МИКРОВОЛНОВЫЙ АВТОГЕНЕРАТОР КЛИСТРОННОГО ТИПА 2016
  • Царев Владимир Алексеевич
  • Мирошниченко Алексей Юрьевич
RU2656707C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ГАЗОГИДРАТОВ 1999
  • Мельников В.П.
  • Нестеров А.Н.
  • Феклистов В.В.
RU2166348C1
СПОСОБ ГЕНЕРАЦИИ ТОРМОЗНОГО ИЗЛУЧЕНИЯ С ПОИМПУЛЬСНЫМ ПЕРЕКЛЮЧЕНИЕМ ЭНЕРГИИ И ИСТОЧНИК ИЗЛУЧЕНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Масленников Олег Юрьевич
  • Симонов Анатолий Сергеевич
  • Мусатов Александр Павлович
  • Клементьев Виктор Васильевич
  • Ламонов Сергей Владимирович
  • Шведунов Василий Иванович
  • Пахомов Николай Иванович
  • Ермаков Андрей Николаевич
  • Каманин Андрей Николаевич
  • Шведунов Иван Васильевич
RU2452143C2
Многоствольный гиротрон 2021
  • Запевалов Владимир Евгеньевич
  • Зуев Андрей Сергеевич
RU2755826C1
ЭКСИМЕРНЫЙ ЛАЗЕР И СПОСОБ ПОЛУЧЕНИЯ ГЕНЕРАЦИИ В НЕМ 2005
  • Лосев Валерий Федорович
  • Панченко Юрий Николаевич
  • Лосева Надежда Андреевна
RU2321119C2
СПОСОБ ГЕНЕРАЦИИ ТОРМОЗНОГО ИЗЛУЧЕНИЯ С ПОИМПУЛЬСНЫМ ПЕРЕКЛЮЧЕНИЕМ ЭНЕРГИИ И ИСТОЧНИК ИЗЛУЧЕНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Ермаков Андрей Николаевич
  • Каманин Андрей Николаевич
  • Клементьев Виктор Васильевич
  • Павшенко Юрий Николаевич
  • Пахомов Николай Иванович
  • Симонов Анатолий Сергеевич
  • Шведунов Иван Васильевич
  • Шведунов Василий Иванович
  • Шведунов Николай Васильевич
RU2610712C1
СВЧ-ГЕНЕРАТОР 2006
  • Фурман Эдвин Гугович
  • Фурман Нагима Жанновна
  • Степанов Андрей Владимирович
RU2321099C2

Иллюстрации к изобретению RU 2 163 415 C2

Реферат патента 2001 года ЛАМПА СТОЯЧЕЙ ВОЛНЫ

Изобретение относится к области радиоэлектроники и предназначено для генерации и регенеративного усиления сверхвысокочастотных электромагнитных колебаний. Устройство состоит из резонатора с распределенными параметрами с размещенными в нем катодом и анодом, пространство между которыми вакуумировано, и элементов связи для ввода и вывода электромагнитной энергии. Режим генерации и регенерации достигается выбором определенного положения катода и анода относительно поля стоячей волны в резонаторе. Техническим результатом является возможность регулирования рабочей частоты в более широких, чем это возможно в прямопролетном клистроне, пределах при более простой конструкции. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 163 415 C2

1. Устройство для генерации и регенеративного усиления электромагнитных колебаний, состоящее из резонатора с распределенными параметрами, катода и анода, пространство между которыми вакуумировано, и элементов связи для ввода и вывода электромагнитной энергии, отличающееся тем, что резонатор представляет собой отрезок волновода с проводящими стенками, в котором установлены катод и анод, разнесенные по продольной оси резонатора, положение катода и анода выбирается определенным образом и по крайней мере для одного из электродов отличается от положения торцевых границ резонаторов, а для пространственного формирования плотности электронного потока в его полости используется поле стоячих волн в нем. 2. Устройство по п.1. отличающееся тем, что его торцевые стенки выполнены подвижными. 3. Устройство по п.2. отличающееся тем, что катод и анод размещены в вакуумированном баллоне из электроизоляционного материала, установленном в резонаторе и имеющем меньшую, чем резонатор, длину.

Документы, цитированные в отчете о поиске Патент 2001 года RU2163415C2

ВАНШТЕЙН Л.А., СОЛНЦЕВ В.А
Лекции по сверхвысокочастотной электронике
- М.: Сов.радио, 1973
Способ фотографической записи звуковых колебаний 1922
  • Коваленков В.И.
SU400A1
Устройство для генерирования кратковременных электронных пакетов 1958
  • Горьков В.А.
  • Елинсон М.И.
SU137545A1
Генератор сверхвысоких частот 1979
  • Гусаков Вадим Викторович
  • Латышев Александр Васильевич
  • Савенок Евгений Дементьевич
SU794705A1
US 5235249 A, 10.08.1993
Автоматическое светосигнальное устройство 1972
  • Нилов Борис Васильевич
SU440529A1
ЛЕБЕДЕВ И.В
Техника и приборы СВЧ
- М.: Высшая школа, 1970, т.1
Ручной ткацкий станок 1922
  • Лягин Н.М.
SU339A1

RU 2 163 415 C2

Авторы

Гладышев В.Н.

Даты

2001-02-20Публикация

1998-05-25Подача