СПОСОБ ГЕРМЕТИЗАЦИИ ЗАКОЛОННОГО ПРОСТРАНСТВА СКВАЖИНЫ Российский патент 2001 года по МПК E21B33/13 

Описание патента на изобретение RU2165005C1

Изобретение относится к изоляционным работам на скважинах нефтяных и газовых месторождений, в частности к способам восстановления герметичности заколонного пространства скважин.

Известен способ герметизации заколонного пространства скважины, заключающийся в воздействии на обсадную колонну в интервале упрочнения заколонного пространства знакопеременным электрическим током [1].

В известном способе электрический ток через контактное устройство воздействует на глинистый пласт в одной точке, тем самым уменьшая воздействие электрического поля и эффективность способа.

Цель изобретения заключается в повышении эффективности герметизации заколонного пространства скважины и тем самым устранении заколонных перетоков.

Цель достигается тем, что в способе герметизации заколонного пространства скважины, заключающемся в воздействии на обсадную колонну в интервале упрочнения заколонного пространства знакопеременным электрическим током, воздействие на обсадную колонну осуществляют знакопеременным током плотностью 20 - 40 А/м2 и одновременно дополнительно - знакопеременным электрическим током с периодически изменяющейся плотностью от 1 до 20 А/м2. Кроме того, время воздействия током положительной полярности больше времени воздействия током отрицательной полярности.

Сущность предлагаемого способа поясняется на фиг.1 и фиг. 2. На фиг. 1 изображена общая схема способа. На фиг. 2 - подробная схема контактного устройства.

После завершения бурения скважины ее стенки 1 закрепляются при помощи обсадной колонны 2, промежуток между обсадной колонной и стенкой скважины заполняется цементным раствором, который после затвердевания превращается в цементный камень 3. В процессе эксплуатации или в результате некачественного цементажа заколонное пространство приобретает некоторую проницаемость, которая способствует миграции добываемых флюидов 4 из коллекторов 5. Для ликвидации этой миграции на контактное устройство 6, спущенное на насосо-компрессорных трубах /НКТ/ 7, по кабелю 8 подается электрический ток. Кабель должен иметь не менее 2 изолированных жил сечением не менее 25 мм2. Кабель крепится на насосно-компрессорных трубах кляксами 9. На центральный контакт 10 контактного устройства электрический ток подается через отдельную жилу 11 кабеля от управляющего устройства 12, которое изменяет характеристики тока. На дополнительные контакты 13 ток подается по другой изолированной шине 14 кабеля через регулируемый балластный резистор 15 от управляющего устройства 12. Основной и дополнительный контакты контактного устройства изолированы друг от друга изолирующими вставками 16. К управляющему устройству ток подводится от блока питания 17. Замыкание электрической цепи осуществляется через заземление 18, в качестве которого может служить или специальный контур, или соседняя скважина.

Проведение работ заключается в следующем: на интервал упрочения опускается на НКТ контактное устройств 6 с подключенным кабелем. На колонну через центральный контакт 10 контактного устройства подается знакопеременный электрический ток.

Одновременно на обсадную колонну в интервале упрочнения через дополнительные контакты 13, расположенные по обе стороны от центрального контакта, воздействуют знакопеременным электрическим током, характеристики которого, а именно плотность тока, меняются с помощью управляющего устройства 12 и балластного резистора 15. В результате воздействия тока в заколонном пространстве и горных породах происходят электрохимические и физико-механические процессы. Во время обработки коллоидные частицы глины и продукты электролиза транспортируются потоком флюида в пласты коллекторов, глинизируя и кольматируя их, а заколонное пространство насыщается глинистыми и коллоидными частицами. Крупные частицы опускаются вниз, заполняя трещины заколонного пространства, и по мере уменьшения циркуляции флюида этот осадок упрочняется, а мелкие частицы под действием электрического поля движутся к колонне, осаждаясь на ней. Увеличению числа коллоидных частиц и тем самым повышению эффективности метода способствует подача знакопеременного электрического тока на дополнительные электроды и периодическое изменение плотности тока от минимальной до максимальной величины, т.е. от 1 до 20 А/м2. В период действия тока максимальной плотности происходит отрыв коллоидных глинистых частиц от пропластка и насыщение ими заколонного пространства. При минимальной плотности тока коллоидные частицы из флюида движутся в зону действия основного электрода и осаждаются на колонне, тем самым закупоривая полости трещин и каверн. Направленному движению частиц глины способствует преобладание времени воздействия положительной части электрического тока над отрицательной. Продолжительность обработки определяется прекращением перетока по данным термометрии. Кроме того, об окончании обработки можно судить по уменьшению величины тока на 5-10% от максимальной величины.

Конкретный пример осуществления способа.

В скважине на обсадную колонну в интервале упрочнения заколонного пространства через центральный контакт контактного устройства воздействовали периодическим током разной полярности плотностью 40 А/м2 в течение 120 с током положительной полярности и 8 сек током отрицательной полярности. Одновременно через дополнительные контакты контактного устройства на обсадную колонну в интервале упрочнения при помощи балластного резистора воздействовали электрическим током разной полярности с периодически изменяющейся величиной плотности тока от 1 до 20 А/м2 в течение 120 с - током положительной полярности и в течении 8 с - током отрицательной полярности.

Общее время воздействия составило 48 ч.

По данным геофизических исследований скважины /термометрии/ заколонный переток прекратился.

Источник информации
1. Патент РФ 2001245 МКИ Е 21 В 33/13.

Похожие патенты RU2165005C1

название год авторы номер документа
СПОСОБ ИССЛЕДОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СКВАЖИНЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Ибрагимов Альберт Эдуардович
RU2389873C1
СПОСОБ СТРОИТЕЛЬСТВА КОНСТРУКЦИИ ГЛУБОКОЙ СКВАЖИНЫ, ТАМПОНАЖНЫЙ РАСТВОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И КОНСТРУКЦИЯ ГЛУБОКОЙ СКВАЖИНЫ 2008
  • Пономаренко Дмитрий Владимирович
  • Дмитриевский Анатолий Николаевич
  • Журавлев Сергей Романович
  • Куликов Константин Владимирович
  • Калинкин Александр Вячеславович
  • Филиппов Андрей Геннадьевич
RU2386787C9
СПОСОБ ВОССТАНОВЛЕНИЯ И ПОДДЕРЖАНИЯ ПРОДУКТИВНОСТИ СКВАЖИНЫ 2002
  • Орентлихерман Э.И.
  • Рейнер В.В.
  • Исхаков А.Я.
  • Воронин Д.В.
RU2215126C2
СПОСОБ ЛИКВИДАЦИИ СКВАЖИНЫ 2004
  • Пономаренко Дмитрий Владимирович
  • Дмитриевский Анатолий Николаевич
  • Журавлев Сергей Романович
  • Фатихов Василь Абударович
  • Куликов Константин Владимирович
  • Кондратьев Дмитрий Венидиктович
RU2283942C2
СПОСОБ ИЗОЛЯЦИИ ИНТЕРВАЛА НЕГЕРМЕТИЧНОСТИ ОБСАДНОЙ КОЛОННЫ В СКВАЖИНЕ 2004
  • Хисметов Т.В.
  • Гилаев Г.Г.
  • Джалалов К.Э.
  • Хасаев Рагим Ариф Оглы
RU2254443C1
СПОСОБ КОМПЛЕКСНОЙ ОЦЕНКИ КАЧЕСТВА ЦЕМЕНТИРОВАНИЯ СКВАЖИН И РАЗОБЩЕНИЯ ПЛАСТОВ-КОЛЛЕКТОРОВ 2007
  • Жвачкин Сергей Анатольевич
  • Баканов Юрий Иванович
  • Гераськин Вадим Георгиевич
  • Климов Вячеслав Васильевич
  • Севрюков Геннадий Алексеевич
  • Кобелева Надежда Ивановна
  • Черномашенко Александр Николаевич
  • Енгибарян Аркадий Арменович
  • Захаров Андрей Александрович
  • Бражников Андрей Александрович
  • Ретюнский Сергей Николаевич
RU2405936C2
Способ герметизации трубного и заколонного пространства 2002
  • Журавлев С.Р.
  • Кондратьев Д.В.
RU2223386C2
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 2004
  • Лыков В.И.
  • Вафин Р.В.
  • Гимаев И.М.
  • Егоров А.Ф.
  • Марданов М.Ш.
RU2244808C1
СПОСОБ ВТОРИЧНОГО ЦЕМЕНТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ СКВАЖИН ПОДЗЕМНЫХ РЕЗЕРВУАРОВ РАЗЛИЧНОГО НАЗНАЧЕНИЯ 2012
  • Пышков Николай Николаевич
  • Казарян Вараздат Амаякович
  • Самолаева Татьяна Николаевна
  • Дубов Николай Матвеевич
  • Сазонов Алексей Алексеевич
RU2485283C1
СПОСОБ ПЕРФОРАЦИИ УЧАСТКА ТРУБЫ В СКВАЖИНЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Журавлев Сергей Романович
  • Пономаренко Дмитрий Владимирович
  • Поликарпов Александр Джонович
  • Поляков Сергей Владимирович
  • Емельянов Алексей Викторович
  • Козырев Алексей Георгиевич
  • Канеев Фарит Абуталибович
RU2414588C1

Иллюстрации к изобретению RU 2 165 005 C1

Реферат патента 2001 года СПОСОБ ГЕРМЕТИЗАЦИИ ЗАКОЛОННОГО ПРОСТРАНСТВА СКВАЖИНЫ

Изобретение относится к ремонтно-изоляционным работам на скважинах нефтяных и газовых месторождений, в частности к способам восстановления герметичности заколонного пространства скважин. Обеспечивает повышение эффективности герметизации заколонного пространства скважины и тем самым устранение заколонных перетоков. Сущность изобретения: в способе герметизации заколонного пространства скважины, заключающемся в воздействии на обсадную колонну в интервале упрочнения заколонного пространства знакопеременным электрическим током, воздействие на обсадную колонну осуществляют знакопеременным током плотностью 20-40 А/м2. Одновременно воздействуют дополнительно знакопеременным электрическим током с периодически изменяющейся плотностью от 1 до 20 А/м2. Кроме того, время воздействия током положительной полярности больше времени воздействия током отрицательной полярности. 2 ил.

Формула изобретения RU 2 165 005 C1

Способ герметизации заколонного пространства скважины, заключающийся в воздействии на обсадную колонну в интервале упрочнения заколонного пространства знакопеременным электрическим током, отличающийся тем, что воздействие на обсадную колонну осуществляют знакопеременным электрическим током плотностью 20 - 40 А/м2 и одновременно дополнительно на обсадную колонну в интервале упрочнения заколонного пространства воздействуют знакопеременным электрическим током с периодически изменяющейся величиной плотности от 1 до 20 А/м2, причем время воздействия током положительной полярности больше времени воздействия током отрицательной полярности.

Документы, цитированные в отчете о поиске Патент 2001 года RU2165005C1

RU 2001245 C1, 15.10.1993
Способ цементирования обсадных колонн 1986
  • Савчук Михаил Иосифович
  • Мотрук Игорь Юрьевич
  • Говдун Василий Васильевич
  • Савчук Тарас Иосифович
  • Тарханова Ольга Степановна
SU1370227A1
СПОСОБ ГЛУШЕНИЯ ГЛУБОКИХ И СВЕРХГЛУБОКИХ СКВАЖИН И ТРУБОПРОВОДОВ 1992
  • Ивашов Валерий Иванович[Uz]
RU2100567C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ГАЗОНЕФТЕВОДОПРОЯВЛЕНИЙ И МЕЖПЛАСТОВЫХ ПЕРЕТОКОВ В ЗАКОЛОННОМ ПРОСТРАНСТВЕ СКВАЖИНЫ 1993
  • Шипица В.Ф.
  • Макаренко П.П.
  • Басарыгин Ю.М.
  • Петерсон А.Я.
RU2061169C1
СПОСОБ ВИБРАЦИОННОГО ЦЕМЕНТИРОВАНИЯ ОБСАДНЫХ ТРУБ В СКВАЖИНАХ 1992
  • Бакулин Андрей Викторович
RU2094590C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ НЕФТЕГАЗОВЫХ СКВАЖИН 1993
  • Лошкарев Г.Л.
  • Арутюнов С.Л.
RU2087692C1
СПОСОБ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ β-FeSi 1996
  • Беляев Е.Ю.
  • Ломовский О.И.
  • Голубкова Г.В.
RU2118669C1
US 4819723 A, 11.04.1989
СЕЛЯКОВ В.И
и др
Перколяционные модели процессов переноса в микронеоднородных средах
- М.: Недра, 1995, с
Устройство для отыскания металлических предметов 1920
  • Миткевич В.Ф.
SU165A1

RU 2 165 005 C1

Авторы

Брехунцов А.М.

Джафаров И.С.

Хисметов Т.В.

Шарифуллин Ф.А.

Баранов В.Б.

Горбунов М.П.

Шацкий А.В.

Даты

2001-04-10Публикация

2000-09-27Подача