Изобретение относится к технике выработки электрической энергии, в частности к нетрадиционным источникам энергии.
Известно устройство, преобразующее энергию морских волн в электрическую энергию (см. Кириллин В.А. Энергетика. Главные проблемы. - М.: Знание, 1990, с. 72-73), которое представляет собой плавающую на воде платформу, разделенную на открытые снизу секции, заполненные воздухом. Волны, проходя под платформой, сжимают поочередно находящийся в секциях воздух. Установленная на пути потока воздуха, перетекающего из секции с большим давлением в секцию с меньшим давлением, воздушная турбинка, соединенная с электрическим генератором, будет преобразовывать энергию волн в электрическую энергию.
Недостатками данного устройства являются небольшая мощность, выход из работы во время штиля? а также громоздкость, т.к. данное устройство должно иметь большие линейные размеры, с тем чтобы колебания платформы под действием волн были небольшими. Кроме этого, направление протекания воздуха из одной секции в другую будет периодически меняться, а это приводит к периодической остановке воздушной турбинки и генератора, что еще более снижает мощность электростанции и требует использования специального обратимого генератора.
Известна также гидропневматическая электростанция (A.M. Gorlov. A New Opportunity for Hydro: Using Air Turbines for Generating Electricity. Hydro Review, September 1992, Volume 11, Number 5), состоящая из герметичного гидровоздушного конвертора, преобразующего энергию воды в энергию воздушного потока, плотины, создающей перепад воды относительно нижнего бьефа и энергоблока, в котором размещены воздушные турбогенераторы. Основным элементом этой электростанции является водо- и воздухонепроницаемый конвертор, сооружаемый из бетона и размещаемый в русле реки. Он может выполняться одно- и двухкамерным. По мнению автора разработки более эффективным является двухкамерный конвертор, состоящий из двух идентичных камер, связанных между собой воздуховодом, в котором размещена воздушная турбина.
Обе камеры оборудованы системой впускных и выпускных затворов, которые обеспечивают опорожнение одной камеры при заполнении другой и наоборот. Когда одна камера заполняется, воздух из нее через воздухопровод выходит в камеру, которая опорожняется, вращая при этом воздушную турбину.
В данном устройстве направление движения воздушного потока в воздухопроводе также будет периодически изменяться, что приведет к следующему циклу работы турбины и генератора: разгон - достижение максимальной скорости вращения - замедление вращения - остановка и т.д. по тому же циклу, что ведет к снижению мощности электростанции и также требует использования обратимого генератора. По данным автора прототипа при перепаде уровней верхнего и нижнего бьефов 6,5 футов (1,98 м) давление (напор), под действием которого движется по воздуховоду воздушный поток, составляет 13 футов водного столба (3,96 м вод.ст. = 38,86 кПа) для более совершенного двухкамерного конвертора (см. там же).
Конвертор данной электростанции, особенно двухкамерный, представляет из себя довольно сложную, громоздкую конструкцию, включающую в себя четыре попеременно открывающихся и закрывающихся затвора, оси и шарниры которых постоянно находятся в воде, что снижает надежность данного устройства и суживает область его применения (из-за невозможности применения электростанции такого типа на ручьях и малых реках).
Задачей настоящего изобретения является увеличение мощности электростанции и расширение области ее применения.
Указанный технический результат достигается тем, что преобразователь энергии воды в энергию воздушного потока выполнен в виде батареи сифонных трубопроводов, верхняя часть каждого из которых соединяется воздухопроводом с общим коллектором, в котором располагается воздушная турбинка.
Выполнение преобразователя в виде сифонов позволяет резко увеличить мощность электростанции, т.к. вакуум в верхней части сифона достигает 7 метров водного столба (68,65 кПа) (см. Чугаев P.P. Гидравлика. - Л.: Энергоиздат, 1982, с. 222), причем достичь такого значения вакуума можно при небольшом перепаде уровней в верхнем и нижнем бьефах, т.к. величина вакуума в сифоне в основном зависит от высоты поднятия верхней части сифона над уровнем воды в верхнем бьефе и определяется по следующей зависимости (см. там же, с. 221):
где h' - высота поднятия верхней части сифона над уровнем воды в верхнем бьефе;
- полный коэффициент сопротивления, учитывающий потерю напора от входа в сифон до его верхней части;
v - скорость течения воды в сифоне;
g - ускорение свободного падения.
Развиваемая турбиной мощность в общем случае вычисляется по формуле (см. Гидроэлектрические станции. / Под ред. Карелина В.Я., Кривченко Г.Я. - М., 1987, с. 21):
N = ρ•g•Q•H•ηэн.об.,
где ρ - плотность воздуха;
g - ускорение свободного падения;
Q - расход воздушного потока;
H - действующий напор (перепад давлений);
ηэн.об. - КПД энергетического оборудования.
Гидропневматическая концепция производства электроэнергии по данным исследований (см. A.M. Goriov. A New Opportunity for Hydro: Using Air Turbines for Generating Electricity. Hydro Review, September 1992, Volume 11, Number 5) эффективна при напорах на плотине до 13 футов (3,96 м), а при больших напорах предпочтительнее гидравлические турбины. Как видно из вышесказанного, при таких условиях перепад давлений, под действием которого движется воздушный поток, а следовательно, и расход воздушного потока, выше у сифона (при одинаковом диаметре воздуховода). При этом расход воздуха, а значит и мощность станции могут быть многократно увеличены при увеличении числа сифонов в батарее. Последнее ограничивается только расходом реки.
К тому же изготовлены сифоны могут быть довольно просто из обычных стальных или пластмассовых труб. При этом не требуется, как в случае строительства прототипа, отвода реки в другое русло.
Установить предлагаемую электростанцию можно на небольших водотоках, причем в некоторых случаях даже без плотины - на реках, имеющих естественные перепады (пороги), что расширяет область ее применения.
На фиг. 1 изображен общий вид гидропневматической электростанции, а на фиг. 2 - схема, поясняющая принцип ее работы.
Конструкция состоит из плотины 1, на которой закреплена батарея сифонных трубопроводов 2, каждый из которых посредством воздуховодов 3 сообщается с коллектором, где располагается воздушная турбина 4, и далее с атмосферой. Вакуум-насос 5 подключен к устью воздуховода и соединяется с последним при помощи вентилей 6 и 7. Все перечисленные составляющие электростанции за исключением сифонов и большей части воздуховодов располагаются в энергоблоке 8.
Гидропневматическая электростанция работает следующим образом. Перед пуском электростанции закрывается вентиль 7, а вентиль 6 открывается и включается вакуум-насос 5, создавая в сифонах давление меньше атмосферного. В результате через сифонные трубопроводы 2 начинается движение воды из верхнего бьефа в нижний. После этого вентиль 6 закрывается, а вентиль 7 открывается и за счет разности давлений, возникающей из-за наличия вакуума в сифоне, начинается движение воздушного потока из атмосферы через воздушную турбину 4 и воздуховоды 3 в сифонные трубопроводы 2. Под воздействием воздушного потока турбина вращается и соединенный с ней генератор вырабатывает электрическую энергию. Во избежание прекращения течения воды в трубопроводах 2 подвод воздуха по воздуховодам 3 регулируется вентилем 7 и не должен уменьшать расход воды на более чем 0,2 максимального, когда каждый трубопровод 2 работает полным сечением (без подвода воздуха).
название | год | авторы | номер документа |
---|---|---|---|
ГИДРОТУРБИНА М.А.СОБОЛЕВА И СПОСОБ ПРОПУСКА ВОДЫ ЧЕРЕЗ НЕЕ | 1989 |
|
RU2020241C1 |
СПОСОБ СТРОИТЕЛЬСТВА МАЛЫХ ГИДРОЭЛЕКТРОСТАНЦИЙ | 2009 |
|
RU2412302C2 |
ГИДРОЭЛЕКТРОСТАНЦИЯ | 2002 |
|
RU2232289C1 |
ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС | 2000 |
|
RU2183287C2 |
СПОСОБ СТРОИТЕЛЬСТВА АВТОНОМНОЙ НАПЛАВНОЙ ПРИЛИВНОЙ ЭЛЕКТРОСТАНЦИИ С ОДНОСТОРОННИМИ ЗАПОРАМИ | 2012 |
|
RU2544091C2 |
МИНИГИДРОЭЛЕКТРОСТАНЦИЯ | 2001 |
|
RU2211944C2 |
Речная гидроветроэлектростанция (ГВЭС) | 2015 |
|
RU2612499C2 |
СПОСОБ ЖИДКОСТНОГО АККУМУЛИРОВАНИЯ ЭЛЕКТРОЭНЕРГИИ | 2007 |
|
RU2328619C1 |
ГИДРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ЗАМКНУТОГО ЦИКЛА | 2011 |
|
RU2483160C2 |
ГИДРАВЛИЧЕСКИЙ ТАРАН | 2016 |
|
RU2630050C1 |
Электростанция предназначена для выработки электрической энергии путем преобразования потенциальной энергии воды. Преобразователь энергии воды в энергию воздушного потока состоит из нескольких сифонных трубопроводов, по которым вода перетекает из верхнего бьефа в нижний бьеф. Верхняя часть каждого из сифонов, т.е. область с наибольшим значением вакуума, соединена отдельным воздуховодом с коллектором, где размещается воздушная турбина, соединенная с электрогенератором. Конструкция электростанции позволяет расширить область применения плотинных гидроэлектростанций. 2 ил.
Гидропневматическая электростанция, включающая низконапорную плотину, преобразователь энергии воды в энергию воздушного потока, воздушный турбогенератор, отличающаяся тем, что преобразователь энергии выполнен в виде батареи сифонных трубопроводов, верхняя часть каждого из которых соединена воздуховодами с коллектором, в котором расположена воздушная турбина.
A | |||
M | |||
GORLOV | |||
A NEW OPPORTUNITY FOR HYDRO: USING AIR TURBINES FOR GENERATING ELECTRICITY | |||
HURDO REVIEW, SEPTEMBER 1992, VOLUME 11, NUMBER 5 | |||
КАРЕЛИН В.А | |||
ЭНЕРГЕТИКА, ГЛАВНЫЕ ПРОБЛЕМЫ | |||
- М.: ЗНАНИЕ, 1990, с.72-73 | |||
ЭЛЕКТРОСТАНЦИЯ | 1991 |
|
RU2034171C1 |
US 3894393 А, 15.07.1975 | |||
СИСТЕМА СВЯЗИ МЕЖДУ СЕТЬЮ КОМПЬЮТЕРОВ В ЛЕТАТЕЛЬНОМ АППАРАТЕ И СЕТЬЮ КОМПЬЮТЕРОВ НА ЗЕМЛЕ | 2008 |
|
RU2497296C2 |
Авторы
Даты
2001-05-20—Публикация
2000-01-27—Подача